This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1687

2007 Today's Calculation Of Integral, 247

Evaluate $ \int_{\frac{\pi}{8}}^{\frac{3}{8}\pi} \frac{11\plus{}4\cos 2x \plus{}\cos 4x}{1\minus{}\cos 4x}\ dx.$

2012 Grigore Moisil Intercounty, 2

$ \int_0^{\pi^2/4} \frac{dx}{1+\sin\sqrt x +\cos\sqrt x} $

2013 Online Math Open Problems, 20

A positive integer $n$ is called [i]mythical[/i] if every divisor of $n$ is two less than a prime. Find the unique mythical number with the largest number of divisors. [i]Proposed by Evan Chen[/i]

2012 Today's Calculation Of Integral, 805

Prove the following inequalities: (1) For $0\leq x\leq 1$, \[1-\frac 13x\leq \frac{1}{\sqrt{1+x^2}}\leq 1.\] (2) $\frac{\pi}{3}-\frac 16\leq \int_0^{\frac{\sqrt{3}}{2}} \frac{1}{\sqrt{1-x^4}}dx\leq \frac{\pi}{3}.$

2011 Today's Calculation Of Integral, 769

In $xyz$ space, find the volume of the solid expressed by $x^2+y^2\leq z\le \sqrt{3}y+1.$

Today's calculation of integrals, 892

Evaluate $\int_0^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\cos x}\ dx.$

2011 Today's Calculation Of Integral, 719

Compute $\int_0^x \sin t\cos t\sin (2\pi\cos t)\ dt$.

1942 Putnam, B5

Sketch the curve $$y= \frac{x}{1+x^6 (\sin x)^{2}},$$ and show that $$ \int_{0}^{\infty} \frac{x}{1+x^6 (\sin x)^{2}}\; dx$$ exists.

2010 Today's Calculation Of Integral, 596

Find the minimum value of $\int_0^{\frac{\pi}{2}} |a\sin 2x-\cos ^ 2 x|dx\ (a>0).$ 2009 Shimane University entrance exam/Medicine

2012 NIMO Problems, 8

Concentric circles $\Omega_1$ and $\Omega_2$ with radii $1$ and $100$, respectively, are drawn with center $O$. Points $A$ and $B$ are chosen independently at random on the circumferences of $\Omega_1$ and $\Omega_2$, respectively. Denote by $\ell$ the tangent line to $\Omega_1$ passing through $A$, and denote by $P$ the reflection of $B$ across $\ell$. Compute the expected value of $OP^2$. [i]Proposed by Lewis Chen[/i]

2005 Greece National Olympiad, 2

The sequence $(a_n)$ is defined by $a_1=1$ and $a_n=a_{n-1}+\frac{1}{n^3}$ for $n>1.$ (a) Prove that $a_n<\frac{5}{4}$ for all $n.$ (b) Given $\epsilon>0$, find the smallest natural number $n_0$ such that ${\mid a_{n+1}-a_n}\mid<\epsilon$ for all $n>n_0.$

2012 Today's Calculation Of Integral, 845

Consider for a real number $t>1$, $I(t)=\int_{-4}^{4t-4} (x-4)\sqrt{x+4}\ dx.$ Find the minimum value of $I(t)\ (t>1).$

1989 Putnam, A2

Tags: integration
Evaluate $\int^{a}_{0}{\int^{b}_{0}{e^{max(b^{2}x^{2},a^{2}y^{2})}dy dx}}$

1967 Miklós Schweitzer, 5

Let $ f$ be a continuous function on the unit interval $ [0,1]$. Show that \[ \lim_{n \rightarrow \infty} \int_0^1... \int_0^1f(\frac{x_1+...+x_n}{n})dx_1...dx_n=f(\frac12)\] and \[ \lim_{n \rightarrow \infty} \int_0^1... \int_0^1f (\sqrt[n]{x_1...x_n})dx_1...dx_n=f(\frac1e).\]

2010 Contests, 525

Let $ a,\ b$ be real numbers satisfying $ \int_0^1 (ax\plus{}b)^2dx\equal{}1$. Determine the values of $ a,\ b$ for which $ \int_0^1 3x(ax\plus{}b)\ dx$ is maximized.

2012 Today's Calculation Of Integral, 785

For a positive real number $x$, find the minimum value of $f(x)=\int_x^{2x} (t\ln t-t)dt.$

2014 IPhOO, 4

A rock is dropped off a cliff of height $ h $ As it falls, a camera takes several photographs, at random intervals. At each picture, I measure the distance the rock has fallen. Let the average (expected value) of all of these distances be $ kh $. If the number of photographs taken is huge, find $ k $. That is: what is the time-average of the distance traveled divided by $ h $, dividing by $h$? $ \textbf {(A) } \dfrac{1}{4} \qquad \textbf {(B) } \dfrac{1}{3} \qquad \textbf {(C) } \dfrac{1}{\sqrt{2}} \qquad \textbf {(D) } \dfrac{1}{2} \qquad \textbf {(E) } \dfrac{1}{\sqrt{3}} $ [i]Problem proposed by Ahaan Rungta[/i]

2005 Today's Calculation Of Integral, 9

Calculate the following indefinite integrals. [1] $\int (x^2+4x-3)^2(x+2)dx$ [2] $\int \frac{\ln x}{x(\ln x+1)}dx$ [3] $\int \frac{\sin \ (\pi \log _2 x)}{x}dx$ [4] $\int \frac{dx}{\sin x\cos ^ 2 x}$ [5] $\int \sqrt{1-3x}\ dx$

2019 Romania National Olympiad, 1

Let $a>0$ and $\mathcal{F} = \{f:[0,1] \to \mathbb{R} : f \text{ is concave and } f(0)=1 \}.$ Determine $$\min_{f \in \mathcal{F}} \bigg\{ \left( \int_0^1 f(x)dx\right)^2 - (a+1) \int_0^1 x^{2a}f(x)dx \bigg\}.$$

2012 Today's Calculation Of Integral, 809

For $a>0$, denote by $S(a)$ the area of the part bounded by the parabolas $y=\frac 12x^2-3a$ and $y=-\frac 12x^2+2ax-a^3-a^2$. Find the maximum area of $S(a)$.

2009 Today's Calculation Of Integral, 456

Find $ \lim_{n\to\infty} \frac{\pi}{n}\left\{\frac{1}{\sin \frac{\pi (n\plus{}1)}{4n}}\plus{}\frac{1}{\sin \frac{\pi (n\plus{}2)}{4n}}\plus{}\cdots \plus{}\frac{1}{\sin \frac{\pi (n\plus{}n)}{4n}}\right\}$

2008 USAMO, 4

Let $ \mathcal{P}$ be a convex polygon with $ n$ sides, $ n\ge3$. Any set of $ n \minus{} 3$ diagonals of $ \mathcal{P}$ that do not intersect in the interior of the polygon determine a [i]triangulation[/i] of $ \mathcal{P}$ into $ n \minus{} 2$ triangles. If $ \mathcal{P}$ is regular and there is a triangulation of $ \mathcal{P}$ consisting of only isosceles triangles, find all the possible values of $ n$.

2011 Today's Calculation Of Integral, 731

Let $C$ be the point of intersection of the tangent lines $l,\ m$ at $A(a,\ a^2),\ B(b,\ b^2)\ (a<b)$ on the parabola $y=x^2$ respectively. When $C$ moves on the parabola $y=\frac 12 x^2-x-2$, find the minimum area bounded by 2 lines $l,\ m$ and the parabola $y=x^2$.

2005 Today's Calculation Of Integral, 62

For $a>1$, let $f(a)=\frac{1}{2}\int_0^1 |ax^n-1|dx+\frac{1}{2}\ (n=1,2,\cdots)$ and let $b_n$ be the minimum value of $f(a)$ at $a>1$. Evaluate \[\lim_{m\to\infty} b_m\cdot b_{m+1}\cdot \cdots\cdots b_{2m}\ (m=1,2,3,\cdots)\]

2007 Today's Calculation Of Integral, 217

Evaluate $ \int_{0}^{1}e^{\sqrt{e^{x}}}\ dx\plus{}2\int_{e}^{e^{\sqrt{e}}}\ln (\ln x)\ dx$.