This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 48

1967 IMO Shortlist, 3

Which regular polygon can be obtained (and how) by cutting a cube with a plane ?

1966 IMO Shortlist, 39

Consider a circle with center $O$ and radius $R,$ and let $A$ and $B$ be two points in the plane of this circle. [b]a.)[/b] Draw a chord $CD$ of the circle such that $CD$ is parallel to $AB,$ and the point of the intersection $P$ of the lines $AC$ and $BD$ lies on the circle. [b]b.)[/b] Show that generally, one gets two possible points $P$ ($P_{1}$ and $P_{2}$) satisfying the condition of the above problem, and compute the distance between these two points, if the lengths $OA=a,$ $OB=b$ and $AB=d$ are given.

2023 German National Olympiad, 5

Let $ABC$ be an acute triangle with altitudes $AA'$ and $BB'$ and orthocenter $H$. Let $C_0$ be the midpoint of the segment $AB$. Let $g$ be the line symmetric to the line $CC_0$ with respect to the angular bisector of $\angle ACB$. Let $h$ be the line symmetric to the line $HC_0$ with respect to the angular bisector of $\angle AHB$. Show that the lines $g$ and $h$ intersect on the line $A'B'$.

2025 Euler Olympiad, Round 2, 2

Points $A$, $B$, $C$, and $D$ lie on a line in that order, and points $E$ and $F$ are located outside the line such that $EA=EB$, $FC=FD$ and $EF \parallel AD$. Let the circumcircles of triangles $ABF$ and $CDE$ intersect at points $P$ and $Q$, and the circumcircles of triangles $ACF$ and $BDE$ intersect at points $M$ and $N$. Prove that the lines $PQ$ and $MN$ pass through the midpoint of segment $EF$. [i] Proposed by Giorgi Arabidze, Georgia[/i]

1998 Bundeswettbewerb Mathematik, 2

Prove that there exist $16$ subsets of set $M = \{1,2,...,10000\}$ with the following property: For every $z \in M$ there are eight of these subsets whose intersection is $\{z\}$.

2017 Korea Junior Math Olympiad, 2

Let there be a scalene triangle $ABC$, and its incircle hits $BC, CA, AB$ at $D, E, F$. The perpendicular bisector of $BC$ meets the circumcircle of $ABC$ at $P, Q$, where $P$ is on the same side with $A$ with respect to $BC$. Let the line parallel to $AQ$ and passing through $D$ meet $EF$ at $R$. Prove that the intersection between $EF$ and $PQ$ lies on the circumcircle of $BCR$.

2016 IMAR Test, 2

Given a positive integer $n$, does there exist a planar polygon and a point in its plane such that every line through that point meets the boundary of the polygon at exactly $2n$ points?

2000 IMO Shortlist, 5

In the plane we have $n$ rectangles with parallel sides. The sides of distinct rectangles lie on distinct lines. The boundaries of the rectangles cut the plane into connected regions. A region is [i]nice[/i] if it has at least one of the vertices of the $n$ rectangles on the boundary. Prove that the sum of the numbers of the vertices of all nice regions is less than $40n$. (There can be nonconvex regions as well as regions with more than one boundary curve.)

1966 IMO Longlists, 39

Consider a circle with center $O$ and radius $R,$ and let $A$ and $B$ be two points in the plane of this circle. [b]a.)[/b] Draw a chord $CD$ of the circle such that $CD$ is parallel to $AB,$ and the point of the intersection $P$ of the lines $AC$ and $BD$ lies on the circle. [b]b.)[/b] Show that generally, one gets two possible points $P$ ($P_{1}$ and $P_{2}$) satisfying the condition of the above problem, and compute the distance between these two points, if the lengths $OA=a,$ $OB=b$ and $AB=d$ are given.

2004 Germany Team Selection Test, 1

Let $D_1$, $D_2$, ..., $D_n$ be closed discs in the plane. (A closed disc is the region limited by a circle, taken jointly with this circle.) Suppose that every point in the plane is contained in at most $2003$ discs $D_i$. Prove that there exists a disc $D_k$ which intersects at most $7\cdot 2003 - 1 = 14020$ other discs $D_i$.

2009 IMAC Arhimede, 3

In the interior of the convex polygon $A_1A_2...A_{2n}$ there is point $M$. Prove that at least one side of the polygon has not intersection points with the lines $MA_i$, $1\le i\le 2n$. (Spain)

1967 IMO Longlists, 27

Which regular polygon can be obtained (and how) by cutting a cube with a plane ?

2011 Greece JBMO TST, 2

On every side of a square $ABCD$, we consider three points different (to each other). a) Find the number of line segments defined with endpoints those points , that do not lie on sides of the square. b) If there are no three of the previous line segments passing through the same point, find how many of the intersection points of those segmens line in the interior of the square.

1975 IMO Shortlist, 13

Let $A_0,A_1, \ldots , A_n$ be points in a plane such that (i) $A_0A_1 \leq \frac{1}{ 2} A_1A_2 \leq \cdots \leq \frac{1}{2^{n-1} } A_{n-1}A_n$ and (ii) $0 < \measuredangle A_0A_1A_2 < \measuredangle A_1A_2A_3 < \cdots < \measuredangle A_{n-2}A_{n-1}A_n < 180^\circ,$ where all these angles have the same orientation. Prove that the segments $A_kA_{k+1},A_mA_{m+1}$ do not intersect for each $k$ and $n$ such that $0 \leq k \leq m - 2 < n- 2.$

2013 German National Olympiad, 5

Five people form several commissions to prepare a competition. Here any commission must be nonempty and any two commissions cannot contain the same members. Moreover, any two commissions have at least one common member. There are already $14$ commissions. Prove that at least one additional commission can be formed.

1979 IMO Shortlist, 16

Let $K$ denote the set $\{a, b, c, d, e\}$. $F$ is a collection of $16$ different subsets of $K$, and it is known that any three members of $F$ have at least one element in common. Show that all $16$ members of $F$ have exactly one element in common.

1979 IMO Longlists, 46

Let $K$ denote the set $\{a, b, c, d, e\}$. $F$ is a collection of $16$ different subsets of $K$, and it is known that any three members of $F$ have at least one element in common. Show that all $16$ members of $F$ have exactly one element in common.

2021 Iberoamerican, 5

For a finite set $C$ of integer numbers, we define $S(C)$ as the sum of the elements of $C$. Find two non-empty sets $A$ and $B$ whose intersection is empty, whose union is the set $\{1,2,\ldots, 2021\}$ and such that the product $S(A)S(B)$ is a perfect square.

2018 IFYM, Sozopol, 6

There are $a$ straight lines in a plane, no two of which are parallel to each other and no three intersect in one point. a) Prove that there exist a straight line for which each of the two Half-Planes defined by it contains at least $\lfloor \frac{(a-1)(a-2)}{10} \rfloor$ intersection points. b) Find all $a$ for which the evaluation in a) is the best possible.

2015 Germany Team Selection Test, 3

Let $ABC$ be an acute triangle with $|AB| \neq |AC|$ and the midpoints of segments $[AB]$ and $[AC]$ be $D$ resp. $E$. The circumcircles of the triangles $BCD$ and $BCE$ intersect the circumcircle of triangle $ADE$ in $P$ resp. $Q$ with $P \neq D$ and $Q \neq E$. Prove $|AP|=|AQ|$. [i](Notation: $|\cdot|$ denotes the length of a segment and $[\cdot]$ denotes the line segment.)[/i]

2024 CAPS Match, 1

Determine whether there exist 2024 distinct positive integers satisfying the following: if we consider every possible ratio between two distinct numbers (we include both $a/b$ and $b/a$), we will obtain numbers with finite decimal expansions (after the decimal point) of mutually distinct non-zero lengths.

1975 IMO Shortlist, 9

Let $f(x)$ be a continuous function defined on the closed interval $0 \leq x \leq 1$. Let $G(f)$ denote the graph of $f(x): G(f) = \{(x, y) \in \mathbb R^2 | 0 \leq$$ x \leq 1, y = f(x) \}$. Let $G_a(f)$ denote the graph of the translated function $f(x - a)$ (translated over a distance $a$), defined by $G_a(f) = \{(x, y) \in \mathbb R^2 | a \leq x \leq a + 1, y = f(x - a) \}$. Is it possible to find for every $a, \ 0 < a < 1$, a continuous function $f(x)$, defined on $0 \leq x \leq 1$, such that $f(0) = f(1) = 0$ and $G(f)$ and $G_a(f)$ are disjoint point sets ?

1969 IMO Longlists, 42

$(MON 3)$ Let $A_k (1 \le k \le h)$ be $n-$element sets such that each two of them have a nonempty intersection. Let $A$ be the union of all the sets $A_k,$ and let $B$ be a subset of $A$ such that for each $k (1\le k \le h)$ the intersection of $A_k$ and $B$ consists of exactly two different elements $a_k$ and $b_k$. Find all subsets $X$ of the set $A$ with $r$ elements satisfying the condition that for at least one index $k,$ both elements $a_k$ and $b_k$ belong to $X$.

2005 Germany Team Selection Test, 3

Let ${n}$ and $k$ be positive integers. There are given ${n}$ circles in the plane. Every two of them intersect at two distinct points, and all points of intersection they determine are pairwise distinct (i. e. no three circles have a common point). No three circles have a point in common. Each intersection point must be colored with one of $n$ distinct colors so that each color is used at least once and exactly $k$ distinct colors occur on each circle. Find all values of $n\geq 2$ and $k$ for which such a coloring is possible. [i]Proposed by Horst Sewerin, Germany[/i]

1961 IMO, 4

Consider triangle $P_1P_2P_3$ and a point $p$ within the triangle. Lines $P_1P, P_2P, P_3P$ intersect the opposite sides in points $Q_1, Q_2, Q_3$ respectively. Prove that, of the numbers \[ \dfrac{P_1P}{PQ_1}, \dfrac{P_2P}{PQ_2}, \dfrac{P_3P}{PQ_3} \] at least one is $\leq 2$ and at least one is $\geq 2$