This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 11

1954 Polish MO Finals, 1

Prove that in an isosceles trapezoid circumscibed around a circle, the segments connecting the points of tangency of opposite sides with the circle pass through the point of intersection of the diagonals.

1957 Moscow Mathematical Olympiad, 346

Find all isosceles trapezoids that are divided into $2$ isosceles triangles by a diagonal.

1992 Tournament Of Towns, (321) 2

In trapezoid $ABCD$ the sides $BC$ and $AD$ are parallel, $AC = BC + AD$, and the angle between the diagonals is equal to $ 60^o$. Prove that $AB = CD$. (Stanislav Smirnov, St Petersburg)

1988 Tournament Of Towns, (176) 2

Two isosceles trapezoids are inscribed in a circle in such a way that each side of each trapezoid is parallel to a certain side of the other trapezoid . Prove that the diagonals of one trapezoid are equal to the diagonals of the other.

1951 Moscow Mathematical Olympiad, 191

Given an isosceles trapezoid $ABCD$ and a point $P$. Prove that a quadrilateral can be constructed from segments $PA, PB, PC, PD$. Note: It is allowed that the vertices of a quadrilateral lie not only not only on the sides of the trapezoid, but also on their extensions.

1978 Czech and Slovak Olympiad III A, 5

Let $ABCS$ be an isosceles trapezoid. Denote $A',B',C',D'$ the incenters of triangles $BCD,CDA,$ $DAB,ABC,$ respectively. Show that $A',B',C',D'$ are vertices of a rectangle.

2023 Novosibirsk Oral Olympiad in Geometry, 4

In a trapezoid, the length of one of the diagonals is equal to the sum of the lengths of the bases, and the angle between the diagonals is $60$ degrees. Prove that this trapezoid is isosceles.

2001 Czech And Slovak Olympiad IIIA, 5

A sheet of paper has the shape of an isosceles trapezoid $C_1AB_2C_2$ with the shorter base $B_2C_2$. The foot of the perpendicular from the midpoint $D$ of $C_1C_2$ to $AC_1$ is denoted by $B_1$. Suppose that upon folding the paper along $DB_1, AD$ and $AC_1$ points $C_1,C_2$ become a single point $C$ and points $B_1,B_2$ become a point $B$. The area of the tetrahedron $ABCD$ is $64$ cm$^3$ . Find the sides of the initial trapezoid.

1993 Czech And Slovak Olympiad IIIA, 3

Let $AKL$ be a triangle such that $\angle ALK > 90^o +\angle LAK$. Construct an isosceles trapezoid $ABCD$ with $AB \parallel CD$ such that $K$ lies on the side $BC, L$ on the diagonal $AC$ and the lines $AK$ and $BL$ intersect at the circumcenter of the trapezoid.

2005 Thailand Mathematical Olympiad, 1

Let $ABCD$ be a trapezoid inscribed in a unit circle with diameter $AB$. If $DC = 4AD$, compute $AD$.

Novosibirsk Oral Geo Oly IX, 2023.4

In a trapezoid, the length of one of the diagonals is equal to the sum of the lengths of the bases, and the angle between the diagonals is $60$ degrees. Prove that this trapezoid is isosceles.