This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 98

2006 Purple Comet Problems, 10

An equilateral triangle with side length $6$ has a square of side length $6$ attached to each of its edges as shown. The distance between the two farthest vertices of this figure (marked $A$ and $B$ in the figure) can be written as $m + \sqrt{n}$ where $m$ and $n$ are positive integers. Find $m + n$. [asy] draw((0,0)--(1,0)--(1/2,sqrt(3)/2)--cycle); draw((1,0)--(1+sqrt(3)/2,1/2)--(1/2+sqrt(3)/2,1/2+sqrt(3)/2)--(1/2,sqrt(3)/2)); draw((0,0)--(-sqrt(3)/2,1/2)--(-sqrt(3)/2+1/2,1/2+sqrt(3)/2)--(1/2,sqrt(3)/2)); dot((-sqrt(3)/2+1/2,1/2+sqrt(3)/2)); label("A", (-sqrt(3)/2+1/2,1/2+sqrt(3)/2), N); draw((1,0)--(1,-1)--(0,-1)--(0,0)); dot((1,-1)); label("B", (1,-1), SE); [/asy]

1992 AMC 12/AHSME, 25

In triangle $ABC$, $\angle ABC = 120^{\circ}$, $AB = 3$ and $BC = 4$. If perpendiculars constructed to $\overline{AB}$ at $A$ and to $\overline{BC}$ at $C$ meet at $D$, then $CD = $ $ \textbf{(A)}\ 3\qquad\textbf{(B)}\ \frac{8}{\sqrt{3}}\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ \frac{11}{2}\qquad\textbf{(E)}\ \frac{10}{\sqrt{3}} $

1996 IMO Shortlist, 4

Let $ABC$ be an equilateral triangle and let $P$ be a point in its interior. Let the lines $AP$, $BP$, $CP$ meet the sides $BC$, $CA$, $AB$ at the points $A_1$, $B_1$, $C_1$, respectively. Prove that $A_1B_1 \cdot B_1C_1 \cdot C_1A_1 \ge A_1B \cdot B_1C \cdot C_1A$.

2010 AMC 12/AHSME, 22

Let $ ABCD$ be a cyclic quadrilateral. The side lengths of $ ABCD$ are distinct integers less than $ 15$ such that $ BC\cdot CD\equal{}AB\cdot DA$. What is the largest possible value of $ BD$? $ \textbf{(A)}\ \sqrt{\frac{325}{2}} \qquad \textbf{(B)}\ \sqrt{185} \qquad \textbf{(C)}\ \sqrt{\frac{389}{2}} \qquad \textbf{(D)}\ \sqrt{\frac{425}{2}} \qquad \textbf{(E)}\ \sqrt{\frac{533}{2}}$

1994 APMO, 4

Is there an infinite set of points in the plane such that no three points are collinear, and the distance between any two points is rational?

2004 National Olympiad First Round, 29

Let $M$ be the intersection of the diagonals $AC$ and $BD$ of cyclic quadrilateral $ABCD$. If $|AB|=5$, $|CD|=3$, and $m(\widehat{AMB}) = 60^\circ$, what is the circumradius of the quadrilateral? $ \textbf{(A)}\ 5\sqrt 3 \qquad\textbf{(B)}\ \dfrac {7\sqrt 3}{3} \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ \sqrt{34} $

2014 PUMaC Geometry A, 7

Let $O$ be the center of a circle of radius $26$, and let $A$, $B$ be two distinct points on the circle, with $M$ being the midpoint of $AB$. Consider point $C$ for which $CO=34$ and $\angle COM=15^\circ$. Let $N$ be the midpoint of $CO$. Suppose that $\angle ACB=90^\circ$. Find $MN$.

2006 AMC 12/AHSME, 17

Square $ ABCD$ has side length $ s$, a circle centered at $ E$ has radius $ r$, and $ r$ and $ s$ are both rational. The circle passes through $ D$, and $ D$ lies on $ \overline{BE}$. Point $ F$ lies on the circle, on the same side of $ \overline{BE}$ as $ A$. Segment $ AF$ is tangent to the circle, and $ AF \equal{} \sqrt {9 \plus{} 5\sqrt {2}}$. What is $ r/s$? [asy]unitsize(6mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=3; pair B=(0,0), C=(3,0), D=(3,3), A=(0,3); pair Ep=(3+5*sqrt(2)/6,3+5*sqrt(2)/6); pair F=intersectionpoints(Circle(A,sqrt(9+5*sqrt(2))),Circle(Ep,5/3))[0]; pair[] dots={A,B,C,D,Ep,F}; draw(A--F); draw(Circle(Ep,5/3)); draw(A--B--C--D--cycle); dot(dots); label("$A$",A,NW); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,SW); label("$E$",Ep,E); label("$F$",F,NW);[/asy]$ \textbf{(A) } \frac {1}{2}\qquad \textbf{(B) } \frac {5}{9}\qquad \textbf{(C) } \frac {3}{5}\qquad \textbf{(D) } \frac {5}{3}\qquad \textbf{(E) } \frac {9}{5}$

2000 Harvard-MIT Mathematics Tournament, 36

If, in a triangle of sides $a, b, c$, the incircle has radius $\frac{b+c-a}{2}$, what is the magnitude of $\angle A$?

2011 NIMO Problems, 14

In circle $\theta_1$ with radius $1$, circles $\phi_1, \phi_2, \dots, \phi_8$, with equal radii, are drawn such that for $1 \le i \le 8$, $\phi_i$ is tangent to $\omega_1$, $\phi_{i-1}$, and $\phi_{i+1}$, where $\phi_0 = \phi_8$ and $\phi_1 = \phi_9$. There exists a circle $\omega_2$ such that $\omega_1 \neq \omega_2$ and $\omega_2$ is tangent to $\phi_i$ for $1 \le i \le 8$. The radius of $\omega_2$ can be expressed in the form $a - b\sqrt{c} -d\sqrt{e - \sqrt{f}} + g \sqrt{h - j \sqrt{k}}$ such that $a, b, \dots, k$ are positive integers and the numbers $e, f, k, \gcd(h, j)$ are squarefree. What is $a+b+c+d+e+f+g+h+j+k$. [i]Proposed by Eugene Chen [/i]

2014 Harvard-MIT Mathematics Tournament, 6

In quadrilateral $ABCD$, we have $AB = 5$, $BC = 6$, $CD = 5$, $DA = 4$, and $\angle ABC = 90^\circ$. Let $AC$ and $BD$ meet at $E$. Compute $\dfrac{BE}{ED}$.

2003 AIME Problems, 12

In convex quadrilateral $ABCD$, $\angle A \cong \angle C$, $AB = CD = 180$, and $AD \neq BC$. The perimeter of $ABCD$ is 640. Find $\lfloor 1000 \cos A \rfloor$. (The notation $\lfloor x \rfloor$ means the greatest integer that is less than or equal to $x$.)

1985 AIME Problems, 9

In a circle, parallel chords of lengths 2, 3, and 4 determine central angles of $\alpha$, $\beta$, and $\alpha + \beta$ radians, respectively, where $\alpha + \beta < \pi$. If $\cos \alpha$, which is a positive rational number, is expressed as a fraction in lowest terms, what is the sum of its numerator and denominator?

2013 Online Math Open Problems, 40

Let $ABC$ be a triangle with $AB=13$, $BC=14$, and $AC=15$. Let $M$ be the midpoint of $BC$ and let $\Gamma$ be the circle passing through $A$ and tangent to line $BC$ at $M$. Let $\Gamma$ intersect lines $AB$ and $AC$ at points $D$ and $E$, respectively, and let $N$ be the midpoint of $DE$. Suppose line $MN$ intersects lines $AB$ and $AC$ at points $P$ and $O$, respectively. If the ratio $MN:NO:OP$ can be written in the form $a:b:c$ with $a,b,c$ positive integers satisfying $\gcd(a,b,c)=1$, find $a+b+c$. [i]James Tao[/i]

2007 Harvard-MIT Mathematics Tournament, 7

Convex quadrilateral $ABCD$ has sides $AB=BC=7$, $CD=5$, and $AD=3$. Given additionally that $m\angle ABC=60^\circ$, find $BD$.

2012 Hitotsubashi University Entrance Examination, 1

Given a triangle with $120^\circ$. Let $x,\ y,\ z$ be the side lengths of the triangle such that $x<y<z$. (1) Find all triplets $(x,\ y,\ z)$ of positive integers $x,\ y,\ z$ such that $x+y-z=2$. (2) Find all triplets $(x,\ y,\ z)$ of positive integers $x,\ y,\ z$ such that $x+y-z=3$. (3) Let $a,\ b$ be non-negative integers. Express the number of $(x,\ y,\ z)$ such that $x+y-z=2^a3^b$ in terms of $a,\ b$. 2012 Hitotsubashi University entrance exam, problem 1

2009 Harvard-MIT Mathematics Tournament, 10

Points $A$ and $B$ lie on circle $\omega$. Point $P$ lies on the extension of segment $AB$ past $B$. Line $\ell$ passes through $P$ and is tangent to $\omega$. The tangents to $\omega$ at points $A$ and $B$ intersect $\ell$ at points $D$ and $C$ respectively. Given that $AB=7$, $BC=2$, and $AD=3$, compute $BP$.

1966 AMC 12/AHSME, 6

$AB$ is the diameter of a circle centered at $O$. $C$ is a point on the circle such that angle $BOC$ is $60^\circ$. If the diameter of the circle is $5$ inches, the length of chord $AC$, expressed in inches, is: $\text{(A)} \ 3 \qquad \text{(B)} \ \frac{5\sqrt{2}}{2} \qquad \text{(C)} \frac{5\sqrt3}{2} \ \qquad \text{(D)} \ 3\sqrt3 \qquad \text{(E)} \ \text{none of these}$

2000 National Olympiad First Round, 5

$[BD]$ is a median of $\triangle ABC$. $m(\widehat{ABD})=90^\circ$, $|AB|=2$, and $|AC|=6$. $|BC|=?$ $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 3\sqrt2 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 4\sqrt2 \qquad\textbf{(E)}\ 2\sqrt6 $

2014 AMC 12/AHSME, 12

Two circles intersect at points $A$ and $B$. The minor arcs $AB$ measure $30^\circ$ on one circle and $60^\circ$ on the other circle. What is the ratio of the area of the larger circle to the area of the smaller circle? $\textbf{(A) }2\qquad \textbf{(B) }1+\sqrt3\qquad \textbf{(C) }3\qquad \textbf{(D) }2+\sqrt3\qquad \textbf{(E) }4\qquad$

2014 Online Math Open Problems, 23

For a prime $q$, let $\Phi_q(x)=x^{q-1}+x^{q-2}+\cdots+x+1$. Find the sum of all primes $p$ such that $3 \le p \le 100$ and there exists an odd prime $q$ and a positive integer $N$ satisfying \[\dbinom{N}{\Phi_q(p)}\equiv \dbinom{2\Phi_q(p)}{N} \not \equiv 0 \pmod p. \][i]Proposed by Sammy Luo[/i]

2011 USA TSTST, 7

Let $ABC$ be a triangle. Its excircles touch sides $BC, CA, AB$ at $D, E, F$, respectively. Prove that the perimeter of triangle $ABC$ is at most twice that of triangle $DEF$.

1982 AMC 12/AHSME, 23

The lengths of the sides of a triangle are consescutive integers, and the largest angle is twice the smallest angle. The cosine of the smallest angle is $\textbf {(A) } \frac 34 \qquad \textbf {(B) } \frac{7}{10} \qquad \textbf {(C) } \frac 23 \qquad \textbf {(D) } \frac{9}{14} \qquad \textbf {(E) } \text{none of these}$

1981 AMC 12/AHSME, 19

In $\triangle ABC$, $M$ is the midpoint of side $BC$, $AN$ bisects $\angle BAC$, $BN\perp AN$ and $\theta$ is the measure of $\angle BAC$. If sides $AB$ and $AC$ have lengths $14$ and $19$, respectively, then length $MN$ equals [asy] size(230); defaultpen(linewidth(0.7)+fontsize(10)); pair B=origin, A=14*dir(36), C=intersectionpoint(B--(9001,0), Circle(A,19)), M=midpoint(B--C), b=A+14*dir(A--C), N=foot(A, B, b); draw(N--B--A--N--M--C--A^^B--M); markscalefactor=0.1; draw(rightanglemark(B,N,A)); pair point=N; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$M$", M, S); label("$N$", N, dir(30)); label("$19$", (A+C)/2, dir(A--C)*dir(90)); label("$14$", (A+B)/2, dir(A--B)*dir(270)); [/asy] $\displaystyle \text{(A)} \ 2 \qquad \text{(B)} \ \frac{5}{2} \qquad \text{(C)} \ \frac{5}{2} - \sin \theta \qquad \text{(D)} \ \frac{5}{2} - \frac{1}{2} \sin \theta \qquad \text{(E)} \ \frac{5}{2} - \frac{1}{2} \sin \left(\frac{1}{2} \theta\right)$

2014 Online Math Open Problems, 29

Let $ABC$ be a triangle with circumcenter $O$, incenter $I$, and circumcircle $\Gamma$. It is known that $AB = 7$, $BC = 8$, $CA = 9$. Let $M$ denote the midpoint of major arc $\widehat{BAC}$ of $\Gamma$, and let $D$ denote the intersection of $\Gamma$ with the circumcircle of $\triangle IMO$ (other than $M$). Let $E$ denote the reflection of $D$ over line $IO$. Find the integer closest to $1000 \cdot \frac{BE}{CE}$. [i]Proposed by Evan Chen[/i]