Found problems: 98
2009 Stanford Mathematics Tournament, 3
Given a regular pentagon, find the ratio of its diagonal, $d$, to its side, $a$
1991 USAMO, 1
In triangle $\, ABC, \,$ angle $\,A\,$ is twice angle $\,B,\,$ angle $\,C\,$ is obtuse, and the three side lengths $\,a,b,c\,$ are integers. Determine, with proof, the minimum possible perimeter.
1985 AIME Problems, 9
In a circle, parallel chords of lengths 2, 3, and 4 determine central angles of $\alpha$, $\beta$, and $\alpha + \beta$ radians, respectively, where $\alpha + \beta < \pi$. If $\cos \alpha$, which is a positive rational number, is expressed as a fraction in lowest terms, what is the sum of its numerator and denominator?
2012 Finnish National High School Mathematics Competition, 1
A secant line splits a circle into two segments. Inside those segments, one draws two squares such that both squares has two corners on a secant line and two on the circumference. The ratio of the square's side lengths is $5:9$. Compute the ratio of the secant line versus circle radius.
1985 ITAMO, 9
In a circle, parallel chords of lengths 2, 3, and 4 determine central angles of $\alpha$, $\beta$, and $\alpha + \beta$ radians, respectively, where $\alpha + \beta < \pi$. If $\cos \alpha$, which is a positive rational number, is expressed as a fraction in lowest terms, what is the sum of its numerator and denominator?
2003 AIME Problems, 12
In convex quadrilateral $ABCD$, $\angle A \cong \angle C$, $AB = CD = 180$, and $AD \neq BC$. The perimeter of $ABCD$ is 640. Find $\lfloor 1000 \cos A \rfloor$. (The notation $\lfloor x \rfloor$ means the greatest integer that is less than or equal to $x$.)
2010 AMC 10, 19
A circle with center $ O$ has area $ 156\pi$. Triangle $ ABC$ is equilateral, $ \overline{BC}$ is a chord on the circle, $ OA \equal{} 4\sqrt3$, and point $ O$ is outside $ \triangle ABC$. What is the side length of $ \triangle ABC$?
$ \textbf{(A)}\ 2\sqrt3 \qquad\textbf{(B)}\ 6 \qquad\textbf{(C)}\ 4\sqrt3 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 18$
2011 Indonesia MO, 3
Given an acute triangle $ABC$, let $l_a$ be the line passing $A$ and perpendicular to $AB$, $l_b$ be the line passing $B$ and perpendicular to $BC$, and $l_c$ be the line passing $C$ and perpendicular to $CA$. Let $D$ be the intersection of $l_b$ and $l_c$, $E$ be the intersection of $l_c$ and $l_a$, and $F$ be the intersection of $l_a$ and $l_b$. Prove that the area of the triangle $DEF$ is at least three times of the area of $ABC$.
2016 Middle European Mathematical Olympiad, 5
Let $ABC$ be an acute triangle for which $AB \neq AC$, and let $O$ be its circumcenter. Line $AO$ meets the circumcircle of $ABC$ again in $D$, and the line $BC$ in $E$. The circumcircle of $CDE$ meets the line $CA$ again in $P$. The lines $PE$ and $AB$ intersect in $Q$. Line passing through $O$ parallel to the line $PE$ intersects the $A$-altitude of $ABC$ in $F$.
Prove that $FP = FQ$.
1989 AIME Problems, 12
Let $ABCD$ be a tetrahedron with $AB=41$, $AC=7$, $AD=18$, $BC=36$, $BD=27$, and $CD=13$, as shown in the figure. Let $d$ be the distance between the midpoints of edges $AB$ and $CD$. Find $d^{2}$.
[asy]
pair C=origin, D=(4,11), A=(8,-5), B=(16,0);
draw(A--B--C--D--B^^D--A--C);
draw(midpoint(A--B)--midpoint(C--D), dashed);
label("27", B--D, NE);
label("41", A--B, SE);
label("7", A--C, SW);
label("$d$", midpoint(A--B)--midpoint(C--D), NE);
label("18", (7,8), SW);
label("13", (3,9), SW);
pair point=(7,0);
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));[/asy]
2011 USA TSTST, 7
Let $ABC$ be a triangle. Its excircles touch sides $BC, CA, AB$ at $D, E, F$, respectively. Prove that the perimeter of triangle $ABC$ is at most twice that of triangle $DEF$.
2012 Online Math Open Problems, 8
In triangle $ABC$ let $D$ be the foot of the altitude from $A$. Suppose that $AD = 4$, $BD = 3$, $CD = 2$, and $AB$ is extended past $B$ to a point $E$ such that $BE = 5$. Determine the value of $CE^2$.
[i]Ray Li.[/i]
[hide="Clarifications"][list=1][*]Triangle $ABC$ is acute.[/list][/hide]
2003 AIME Problems, 10
Triangle $ABC$ is isosceles with $AC = BC$ and $\angle ACB = 106^\circ$. Point $M$ is in the interior of the triangle so that $\angle MAC = 7^\circ$ and $\angle MCA = 23^\circ$. Find the number of degrees in $\angle CMB$.
2014 Math Prize For Girls Problems, 8
A triangle has sides of length $\sqrt{13}$, $\sqrt{17}$, and $2 \sqrt{5}$. Compute the area of the triangle.
1979 IMO Longlists, 74
Given an equilateral triangle $ABC$ of side $a$ in a plane, let $M$ be a point on the circumcircle of the triangle. Prove that the sum $s = MA^4 +MB^4 +MC^4$ is independent of the position of the point $M$ on the circle, and determine that constant value as a function of $a$.
1996 IMO Shortlist, 4
Let $ABC$ be an equilateral triangle and let $P$ be a point in its interior. Let the lines $AP$, $BP$, $CP$ meet the sides $BC$, $CA$, $AB$ at the points $A_1$, $B_1$, $C_1$, respectively. Prove that
$A_1B_1 \cdot B_1C_1 \cdot C_1A_1 \ge A_1B \cdot B_1C \cdot C_1A$.
2011 Purple Comet Problems, 24
The diagram below shows a regular hexagon with an inscribed square where two sides of the square are parallel to two sides of the hexagon. There are positive integers $m$, $n$, and $p$ such that the ratio of the area of the hexagon to the area of the square can be written as $\tfrac{m+\sqrt{n}}{p}$ where $m$ and $p$ are relatively prime. Find $m + n + p$.
[asy]
import graph; size(4cm);
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
draw((0,1)--(1,1)--(1.5,1.87)--(1,2.73)--(0,2.73)--(-0.5,1.87)--cycle);
filldraw((1.13,2.5)--(-0.13,2.5)--(-0.13,1.23)--(1.13,1.23)--cycle,grey);
draw((0,1)--(1,1));
draw((1,1)--(1.5,1.87));
draw((1.5,1.87)--(1,2.73));
draw((1,2.73)--(0,2.73));
draw((0,2.73)--(-0.5,1.87));
draw((-0.5,1.87)--(0,1));
draw((1.13,2.5)--(-0.13,2.5));
draw((-0.13,2.5)--(-0.13,1.23));
draw((-0.13,1.23)--(1.13,1.23));
draw((1.13,1.23)--(1.13,2.5)); [/asy]
2004 National Olympiad First Round, 29
Let $M$ be the intersection of the diagonals $AC$ and $BD$ of cyclic quadrilateral $ABCD$. If $|AB|=5$, $|CD|=3$, and $m(\widehat{AMB}) = 60^\circ$, what is the circumradius of the quadrilateral?
$
\textbf{(A)}\ 5\sqrt 3
\qquad\textbf{(B)}\ \dfrac {7\sqrt 3}{3}
\qquad\textbf{(C)}\ 6
\qquad\textbf{(D)}\ 4
\qquad\textbf{(E)}\ \sqrt{34}
$
2012 Hitotsubashi University Entrance Examination, 1
Given a triangle with $120^\circ$. Let $x,\ y,\ z$ be the side lengths of the triangle such that $x<y<z$.
(1) Find all triplets $(x,\ y,\ z)$ of positive integers $x,\ y,\ z$ such that $x+y-z=2$.
(2) Find all triplets $(x,\ y,\ z)$ of positive integers $x,\ y,\ z$ such that $x+y-z=3$.
(3) Let $a,\ b$ be non-negative integers. Express the number of $(x,\ y,\ z)$ such that $x+y-z=2^a3^b$ in terms of $a,\ b$.
2012 Hitotsubashi University entrance exam, problem 1
1994 APMO, 4
Is there an infinite set of points in the plane such that no three points are collinear, and the distance between any two points is rational?
2004 USAMTS Problems, 5
Point $G$ is where the medians of the triangle $ABC$ intersect and point $D$ is the midpoint of side $BC$. The triangle $BDG$ is equilateral with side length 1. Determine the lengths, $AB$, $BC$, and $CA$, of the sides of triangle $ABC$.
[asy]
size(200);
defaultpen(fontsize(10));
real r=100.8933946;
pair A=sqrt(7)*dir(r), B=origin, C=(2,0), D=midpoint(B--C), E=midpoint(A--C), F=midpoint(A--B), G=centroid(A,B,C);
draw(A--B--C--A--D^^B--E^^C--F);
pair point=G;
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));
label("$E$", E, dir(point--E));
label("$F$", F, dir(point--F));
label("$G$", G, dir(20));
label("1", B--G, dir(150));
label("1", D--G, dir(30));
label("1", B--D, dir(270));[/asy]
1964 AMC 12/AHSME, 29
In this figure $\angle RFS = \angle FDR$, $FD = 4$ inches, $DR = 6$ inches, $FR = 5$ inches, $FS = 7\dfrac{1}{2}$ inches. The length of $RS$, in inches, is:
[asy]
import olympiad;
pair F,R,S,D;
F=origin;
R=5*dir(aCos(9/16));
S=(7.5,0);
D=4*dir(aCos(9/16)+aCos(1/8));
label("$F$",F,SW);label("$R$",R,N); label("$S$",S,SE); label("$D$",D,W);
label("$7\frac{1}{2}$",(F+S)/2.5,SE);
label("$4$",midpoint(F--D),SW);
label("$5$",midpoint(F--R),W);
label("$6$",midpoint(D--R),N);
draw(F--D--R--F--S--R);
markscalefactor=0.1;
draw(anglemark(S,F,R)); draw(anglemark(F,D,R));
//Credit to throwaway1489 for the diagram[/asy]
$\textbf{(A)}\ \text{undetermined} \qquad
\textbf{(B)}\ 4\qquad
\textbf{(C)}\ 5\dfrac{1}{2} \qquad
\textbf{(D)}\ 6 \qquad
\textbf{(E)}\ 6\dfrac{1}{4}$
2013 Online Math Open Problems, 40
Let $ABC$ be a triangle with $AB=13$, $BC=14$, and $AC=15$. Let $M$ be the midpoint of $BC$ and let $\Gamma$ be the circle passing through $A$ and tangent to line $BC$ at $M$. Let $\Gamma$ intersect lines $AB$ and $AC$ at points $D$ and $E$, respectively, and let $N$ be the midpoint of $DE$. Suppose line $MN$ intersects lines $AB$ and $AC$ at points $P$ and $O$, respectively. If the ratio $MN:NO:OP$ can be written in the form $a:b:c$ with $a,b,c$ positive integers satisfying $\gcd(a,b,c)=1$, find $a+b+c$.
[i]James Tao[/i]
2003 Turkey Junior National Olympiad, 1
Let $ABCD$ be a cyclic quadrilateral, and $E$ be the intersection of its diagonals. If $m(\widehat{ADB}) = 22.5^\circ$, $|BD|=6$, and $|AD|\cdot|CE|=|DC|\cdot|AE|$, find the area of the quadrilateral $ABCD$.
1996 USAMO, 5
Let $ABC$ be a triangle, and $M$ an interior point such that $\angle MAB=10^\circ$, $\angle MBA=20^\circ$, $\angle MAC=40^\circ$ and $\angle MCA=30^\circ$. Prove that the triangle is isosceles.