This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

2007 Today's Calculation Of Integral, 219

Let $ f(x)\equal{}\left(1\plus{}\frac{1}{x}\right)^{x}\ (x>0)$. Find $ \lim_{n\to\infty}\left\{f\left(\frac{1}{n}\right)f\left(\frac{2}{n}\right)f\left(\frac{3}{n}\right)\cdots\cdots f\left(\frac{n}{n}\right)\right\}^{\frac{1}{n}}$.

2000 Vietnam National Olympiad, 1

Tags: limit , algebra
Given a real number $ c > 0$, a sequence $ (x_n)$ of real numbers is defined by $ x_{n \plus{} 1} \equal{} \sqrt {c \minus{} \sqrt {c \plus{} x_n}}$ for $ n \ge 0$. Find all values of $ c$ such that for each initial value $ x_0$ in $ (0, c)$, the sequence $ (x_n)$ is defined for all $ n$ and has a finite limit $ \lim x_n$ when $ n\to \plus{} \infty$.

2020 LIMIT Category 2, 1

Find the number of $f:\{1,\ldots, 5\}\to \{1,\ldots, 5\}$ such that $f(f(x))=x$ (A)$26$ (B)$41$ (C)$120$ (D)$60$

2013 Moldova Team Selection Test, 4

Tags: logarithm , limit , algebra
Consider a positive real number $a$ and a positive integer $m$. The sequence $(x_k)_{k\in \mathbb{Z}^{+}}$ is defined as: $x_1=1$, $x_2=a$, $x_{n+2}=\sqrt[m+1]{x_{n+1}^mx_n}$. $a)$ Prove that the sequence is converging. $b)$ Find $\lim_{n\rightarrow \infty}{x_n}$.

2007 China Team Selection Test, 3

Prove that for any positive integer $ n$, there exists only $ n$ degree polynomial $ f(x),$ satisfying $ f(0) \equal{} 1$ and $ (x \plus{} 1)[f(x)]^2 \minus{} 1$ is an odd function.

2012 Today's Calculation Of Integral, 782

Let $C$ be the part of the graph $y=\frac{1}{x}\ (x>0)$. Take a point $P\left(t,\ \frac{1}{t}\right)\ (t>0)$ on $C$. (i) Find the equation of the tangent $l$ at the point $A(1,\ 1)$ on the curve $C$. (ii) Let $m$ be the line passing through the point $P$ and parallel to $l$. Denote $Q$ be the intersection point of the line $m$ and the curve $C$ other than $P$. Find the coordinate of $Q$. (iii) Express the area $S$ of the part bounded by two line segments $OP,\ OQ$ and the curve $C$ for the origin $O$ in terms of $t$. (iv) Express the volume $V$ of the solid generated by a rotation of the part enclosed by two lines passing through the point $P$ and pararell to the $y$-axis and passing through the point $Q$ and pararell to $y$-axis, the curve $C$ and the $x$-axis in terms of $t$. (v) $\lim_{t\rightarrow 1-0} \frac{S}{V}.$

2004 Harvard-MIT Mathematics Tournament, 3

Tags: limit , calculus
Find \[ \lim_{x \to \infty} \left( \sqrt[3]{x^3 + x^2}-\sqrt[3]{x^3-x^2} \right). \]

2007 Moldova National Olympiad, 12.7

Find the limit \[\lim_{n\to \infty}\frac{\sqrt[n+1]{(2n+3)(2n+4)\ldots (3n+3)}}{n+1}\]

2017 District Olympiad, 1

Let $ \left( a_n \right)_{n\ge 1} $ be a sequence of real numbers such that $ a_1>2 $ and $ a_{n+1} =a_1+\frac{2}{a_n} , $ for all natural numbers $ n. $ [b]a)[/b] Show that $ a_{2n-1} +a_{2n} >4 , $ for all natural numbers $ n, $ and $ \lim_{n\to\infty} a_n =2. $ [b]b)[/b] Find the biggest real number $ a $ for which the following inequality is true: $$ \sqrt{x^2+a_1^2} +\sqrt{x^2+a_2^2} +\sqrt{x^2+a_3^2} +\cdots +\sqrt{x^2+a_n^2} > n\sqrt{x^2+a^2}, \quad\forall x\in\mathbb{R} ,\quad\forall n\in\mathbb{N} . $$

2012 Today's Calculation Of Integral, 799

Let $n$ be positive integer. Define a sequence $\{a_k\}$ by \[a_1=\frac{1}{n(n+1)},\ a_{k+1}=-\frac{1}{k+n+1}+\frac{n}{k}\sum_{i=1}^k a_i\ \ (k=1,\ 2,\ 3,\ \cdots).\] (1) Find $a_2$ and $a_3$. (2) Find the general term $a_k$. (3) Let $b_n=\sum_{k=1}^n \sqrt{a_k}$. Prove that $\lim_{n\to\infty} b_n=\ln 2$. 50 points

2024 District Olympiad, P4

Consider the functions $f,g:\mathbb{R}\to\mathbb{R}$ such that $f{}$ is continous. For any real numbers $a<b<c$ there exists a sequence $(x_n)_{n\geqslant 1}$ which converges to $b{}$ and for which the limit of $g(x_n)$ as $n{}$ tends to infinity exists and satisfies \[f(a)<\lim_{n\to\infty}g(x_n)<f(c).\][list=a] [*]Give an example of a pair of such functions $f,g$ for which $g{}$ is discontinous at every point. [*]Prove that if $g{}$ is monotonous, then $f=g.$ [/list]

1985 Traian Lălescu, 1.2

Calculate $ \sum_{i=2}^{\infty}\frac{i^2-2}{i!} . $

2012 Today's Calculation Of Integral, 784

Define for positive integer $n$, a function $f_n(x)=\frac{\ln x}{x^n}\ (x>0).$ In the coordinate plane, denote by $S_n$ the area of the figure enclosed by $y=f_n(x)\ (x\leq t)$, the $x$-axis and the line $x=t$ and denote by $T_n$ the area of the rectagle with four vertices $(1,\ 0),\ (t,\ 0),\ (t,\ f_n(t))$ and $(1,\ f_n(t))$. (1) Find the local maximum $f_n(x)$. (2) When $t$ moves in the range of $t>1$, find the value of $t$ for which $T_n(t)-S_n(t)$ is maximized. (3) Find $S_1(t)$ and $S_n(t)\ (n\geq 2)$. (4) For each $n\geq 2$, prove that there exists the only $t>1$ such that $T_n(t)=S_n(t)$. Note that you may use $\lim_{x\to\infty} \frac{\ln x}{x}=0.$

2003 Romania National Olympiad, 3

Let be two functions $ f,g:\mathbb{R}_{\ge 0 }\longrightarrow\mathbb{R} $ having that properties that $ f $ is continuous, $ g $ is nondecreasing and unbounded, and for any sequence of rational numbers $ \left( x_n \right)_{n\ge 1} $ that diverges to $ \infty , $ we have $$ 1=\lim_{n\to\infty } f\left( x_n \right) g\left( x_n \right) . $$ Prove that $1=\lim_{x\to\infty } f\left( x \right) g\left( x \right) . $ [i]Radu Gologan[/i]

1998 Turkey MO (2nd round), 3

Some of the vertices of unit squares of an $n\times n$ chessboard are colored so that any $k\times k$ ( $1\le k\le n$) square consisting of these unit squares has a colored point on at least one of its sides. Let $l(n)$ denote the minimum number of colored points required to satisfy this condition. Prove that $\underset{n\to \infty }{\mathop \lim }\,\frac{l(n)}{{{n}^{2}}}=\frac{2}{7}$.

1997 South africa National Olympiad, 1

Tags: geometry , limit
From an initial triangle $\Delta A_0B_0C_0$, a sequence of triangles $\Delta A_1B_1C_1$, $A_2B_2C_2$, ... is formed such that, at each stage, $A_{k + 1}$, $B_{k + 1}$ and $C_{k + 1}$ are the points where the incircle of $\Delta A_kB_kC_k$ touches the sides $B_kC_k$, $C_kA_k$ and $A_kB_k$ respectively. (a) Express $\angle A_{k + 1}B_{k + 1}C_{k + 1}$ in terms of $\angle A_kB_kC_k$. (b) Deduce that, as $k$ increases, $\angle A_kB_kC_k$ tends to $60^{\circ}$.

1969 Canada National Olympiad, 2

Determine which of the two numbers $\sqrt{c+1}-\sqrt{c}$, $\sqrt{c}-\sqrt{c-1}$ is greater for any $c\ge 1$.

2019 Mathematical Talent Reward Programme, MCQ: P 6

Tags: limit
Find the limit $\lim \limits_{n \to \infty} \sin{n!}$ [list=1] [*] 1 [*] 0 [*] $\frac{\pi}{4}$ [*] None of the above [/list]

2005 VTRMC, Problem 5

Define $f(x,y)=\frac{xy}{x^2+y^2\ln(x^2)^2}$ if $x\ne0$, and $f(0,y)=0$ if $y\ne0$. Determine whether $\lim_{(x,y)\to(0,0)}f(x,y)$ exists, and find its value is if the limit does exist.

1995 Putnam, 5

Let $x_1,x_2,\cdots, x_n$ be real valued differentiable functions of a variable $t$ which satisfy \begin{align*} & \frac{\mathrm{d}x_1}{\mathrm{d}t}=a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n\\ & \frac{\mathrm{d}x_2}{\mathrm{d}t}=a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n\\ & \;\qquad \vdots \\ & \frac{\mathrm{d}x_n}{\mathrm{d}t}=a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n\\ \end{align*} For some constants $a_{ij}>0$. Suppose that $\lim_{t \to \infty}x_i(t)=0$ for all $1\le i \le n$. Are the functions $x_i$ necessarily linearly dependent?

1997 IMC, 1

Let $\{\epsilon_n\}^\infty_{n=1}$ be a sequence of positive reals with $\lim\limits_{n\rightarrow+\infty}\epsilon_n = 0$. Find \[ \lim\limits_{n\rightarrow\infty}\dfrac{1}{n}\sum\limits^{n}_{k=1}\ln\left(\dfrac{k}{n}+\epsilon_n\right) \]

2010 Laurențiu Panaitopol, Tulcea, 1

Show that if $ \left( s_n \right)_{n\ge 0} $ is a sequence that tends to $ 6, $ then, the sequence $$ \left( \sqrt[3]{s_n+\sqrt[3]{s_{n-1}+\sqrt[3]{s_{n-2}+\sqrt[3]{\cdots +\sqrt[3]{s_0}}}}} \right)_{n\ge 0} $$ tends to $ 2. $ [i]Mihai Bălună[/i]

2010 Today's Calculation Of Integral, 665

Find $\lim_{n\to\infty} \int_0^{\pi} x|\sin 2nx| dx\ (n=1,\ 2,\ \cdots)$. [i]1992 Japan Women's University entrance exam/Physics, Mathematics[/i]

2009 VJIMC, Problem 1

Tags: incenter , geometry , limit
Let $ABC$ be a non-degenerate triangle in the euclidean plane. Define a sequence $(C_n)_{n=0}^\infty$ of points as follows: $C_0:=C$, and $C_{n+1}$ is the incenter of the triangle $ABC_n$. Find $\lim_{n\to\infty}C_n$.

2012 Today's Calculation Of Integral, 812

Let $f(x)=\frac{\cos 2x-(a+2)\cos x+a+1}{\sin x}.$ For constant $a$ such that $\lim_{x\rightarrow 0} \frac{f(x)}{x}=\frac 12$, evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{f(x)}dx.$