This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

2019 Teodor Topan, 3

Let $ \left( c_n \right)_{n\ge 1} $ be a sequence of real numbers. Prove that the sequences $ \left( c_n\sin n \right)_{n\ge 1} ,\left( c_n\cos n \right)_{n\ge 1} $ are both convergent if and only if $ \left( c_n \right)_{n\ge 1} $ converges to $ 0. $ [i]Mihai Piticari[/i] and [i]Vladimir Cerbu[/i]

2013 Stanford Mathematics Tournament, 3

Suppose $a$ and $b$ are real numbers such that \[\lim_{x\to 0}\frac{\sin^2 x}{e^{ax}-bx-1}=\frac{1}{2}.\] Determine all possible ordered pairs $(a, b)$.

1965 AMC 12/AHSME, 21

It is possible to choose $ x > \frac {2}{3}$ in such a way that the value of $ \log_{10}(x^2 \plus{} 3) \minus{} 2 \log_{10}x$ is $ \textbf{(A)}\ \text{negative} \qquad \textbf{(B)}\ \text{zero} \qquad \textbf{(C)}\ \text{one}$ $ \textbf{(D)}\ \text{smaller than any positive number that might be specified}$ $ \textbf{(E)}\ \text{greater than any positive number that might be specified}$

2020 LIMIT Category 1, 4

The total number of solutions of $xyz=2520$ (A)$2520$ (B)$2160$ (C)$540$ (D)None of these

1994 Putnam, 5

Tags: limit
Let $(r_n)_{n\ge 0}$ be a sequence of positive real numbers such that $\lim_{n\to \infty} r_n = 0$. Let $S$ be the set of numbers representable as a sum \[ r_{i_1} + r_{i_2} +\cdots + r_{i_{1994}} ,\] with $i_1 < i_2 < \cdots< i_{1994}.$ Show that every nonempty interval $(a, b)$ contains a nonempty subinterval $(c, d)$ that does not intersect $S$.

2007 AMC 12/AHSME, 11

A finite sequence of three-digit integers has the property that the tens and units digits of each term are, respectively, the hundreds and tens digits of the next term, and the tens and units digits of the last term are, respectively, the hundreds and tens digits of the first term. For example, such a sequence might begin with the terms $ 247,$ $ 275,$ and $ 756$ and end with the term $ 824.$ Let $ \mathcal{S}$ be the sum of all the terms in the sequence. What is the largest prime factor that always divides $ \mathcal{S}?$ $ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ 7 \qquad \textbf{(C)}\ 13 \qquad \textbf{(D)}\ 37 \qquad \textbf{(E)}\ 43$

2007 Nicolae Păun, 3

In the following exercise, $ C_G (e) $ denotes the centralizer of the element $ e $ in the group $ G. $ [b]a)[/b] Prove that $ \max_{\sigma\in S_n\setminus\{1\}} \left| C_{S_n} (\sigma ) \right| <\frac{n!}{2} , $ for any natural number $ n\ge 4. $ [b]b)[/b] Show that $ \lim_{n\to\infty} \left(\frac{1}{n!}\cdot\max_{\sigma\in S_n\setminus\{1\}} \left| C_{S_n} (\sigma ) \right|\right) =0. $ [i]Alexandru Cioba[/i]

2010 Contests, 2

Calculate the sum of the series $\sum_{-\infty}^{\infty}\frac{\sin^33^k}{3^k}$.

1987 Flanders Math Olympiad, 4

Show that for $p>1$ we have \[\lim_{n\rightarrow+\infty}\frac{1^p+2^p+...+(n-1)^p+n^p+(n-1)^p+...+2^p+1^p}{n^2} = +\infty\] Find the limit if $p=1$.

2011 Putnam, A6

Let $G$ be an abelian group with $n$ elements, and let \[\{g_1=e,g_2,\dots,g_k\}\subsetneq G\] be a (not necessarily minimal) set of distinct generators of $G.$ A special die, which randomly selects one of the elements $g_1,g_2,\dots,g_k$ with equal probability, is rolled $m$ times and the selected elements are multiplied to produce an element $g\in G.$ Prove that there exists a real number $b\in(0,1)$ such that \[\lim_{m\to\infty}\frac1{b^{2m}}\sum_{x\in G}\left(\mathrm{Prob}(g=x)-\frac1n\right)^2\] is positive and finite.

2014 Uzbekistan National Olympiad, 2

Find all functions $f:R\rightarrow R$ such that \[ f(x^3)+f(y^3)=(x+y)(f(x^2)+f(y^2)-f(xy)) \] for all $x,y\in R$.

2009 Today's Calculation Of Integral, 430

For a natural number $ n$, let $ a_n\equal{}\int_0^{\frac{\pi}{4}} (\tan x)^{2n}dx$. Answer the following questions. (1) Find $ a_1$. (2) Express $ a_{n\plus{}1}$ in terms of $ a_n$. (3) Find $ \lim_{n\to\infty} a_n$. (4) Find $ \lim_{n\to\infty} \sum_{k\equal{}1}^n \frac{(\minus{}1)^{k\plus{}1}}{2k\minus{}1}$.

2006 Stanford Mathematics Tournament, 10

Evaluate: $ \sum\limits_{n\equal{}1}^\infty \arctan{\left(\frac{1}{n^2\minus{}n\plus{}1}\right)}$

2009 Today's Calculation Of Integral, 455

(1) Evaluate $ \int_1^{3\sqrt{3}} \left(\frac{1}{\sqrt[3]{x^2}}\minus{}\frac{1}{1\plus{}\sqrt[3]{x^2}}\right)\ dx.$ (2) Find the positive real numbers $ a,\ b$ such that for $ t>1,$ $ \lim_{t\rightarrow \infty} \left(\int_1^t \frac{1}{1\plus{}\sqrt[3]{x^2}}\ dx\minus{}at^b\right)$ converges.

2024 Mexican University Math Olympiad, 4

Given \( b > 0 \), consider the following matrix: \[ B = \begin{pmatrix} b & b^2 \\ b^2 & b^3 \end{pmatrix} \] Denote by \( e_i \) the top left entry of \( B^i \). Prove that the following limit exists and calculate its value: \[ \lim_{i \to \infty} \sqrt[i]{e_i}. \]

2005 Today's Calculation Of Integral, 52

Evaluate \[\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{n+k\sqrt{-1}}\]

2006 Moldova National Olympiad, 11.6

Sequences $(x_n)_{n\ge1}$, $(y_n)_{n\ge1}$ satisfy the relations $x_n=4x_{n-1}+3y_{n-1}$ and $y_n=2x_{n-1}+3y_{n-1}$ for $n\ge1$. If $x_1=y_1=5$ find $x_n$ and $y_n$. Calculate $\lim_{n\rightarrow\infty}\frac{x_n}{y_n}$.

2009 Today's Calculation Of Integral, 450

Let $ a,\ b$ be postive real numbers. Find $ \lim_{n\to\infty} \sum_{k\equal{}1}^n \frac{n}{(k\plus{}an)(k\plus{}bn)}.$

2024 Bulgarian Autumn Math Competition, 12.1

Tags: sequence , limit , algebra
Let $a_0,a_1,a_2 \dots a_n, \dots$ be an infinite sequence of real numbers, defined by $$a_0 = c$$ $$a_{n+1} = {a_n}^2+\frac{a_n}{2}+c$$ for some real $c > 0$. Find all values of $c$ for which the sequence converges and the limit for those values.

2013 India Regional Mathematical Olympiad, 5

Let $n \ge 3$ be a natural number and let $P$ be a polygon with $n$ sides. Let $a_1,a_2,\cdots, a_n$ be the lengths of sides of $P$ and let $p$ be its perimeter. Prove that \[\frac{a_1}{p-a_1}+\frac{a_2}{p-a_2}+\cdots + \frac{a_n}{p-a_n} < 2 \]

2012 Traian Lălescu, 1

Let $a,b,c,\alpha,\beta,\gamma \in\mathbb{R}$ such as $a^2+b^2+c^2 \neq 0 \neq \alpha\beta\gamma$ and $24^{\alpha}\neq 3^{\beta} \neq 2012^{\gamma} \neq 24^{\alpha}$. Prove that the equation \[ a \cdot 24^{\alpha x}+b \cdot 3^{\beta x} + c \cdot 2012^{\gamma x}=0 \] has at most two real solutions.

2010 Today's Calculation Of Integral, 605

Let $f(x)$ be a differentiable function. Find the following limit value: \[\lim_{n\to\infty} \dbinom{n}{k}\left\{f\left(\frac{x}{n}\right)-f(0)\right\}^k.\] Especially, for $f(x)=(x-\alpha)(x-\beta)$ find the limit value above. 1956 Tokyo Institute of Technology entrance exam

1990 Vietnam Team Selection Test, 2

Tags: algebra , limit
Let be given four positive real numbers $ a$, $ b$, $ A$, $ B$. Consider a sequence of real numbers $ x_1$, $ x_2$, $ x_3$, $ \ldots$ is given by $ x_1 \equal{} a$, $ x_2 \equal{} b$ and $ x_{n \plus{} 1} \equal{} A\sqrt [3]{x_n^2} \plus{} B\sqrt [3]{x_{n \minus{} 1}^2}$ ($ n \equal{} 2, 3, 4, \ldots$). Prove that there exist limit $ \lim_{n\to \plus{} \propto}x_n$ and find this limit.

1990 India National Olympiad, 5

Let $ a$, $ b$, $ c$ denote the sides of a triangle. Show that the quantity \[ \frac{a}{b\plus{}c}\plus{}\frac{b}{c\plus{}a}\plus{}\frac{c}{a\plus{}b}\] must lie between the limits $ 3/2$ and 2. Can equality hold at either limits?

1991 French Mathematical Olympiad, Problem 2

Tags: limit , algebra , function
For each $n\in\mathbb N$, the function $f_n$ is defined on real numbers $x\ge n$ by $$f_n(x)=\sqrt{x-n}+\sqrt{x-n+1}+\ldots+\sqrt{x+n}-(2n+1)\sqrt x.$$(a) If $n$ is fixed, prove that $\lim_{x\to+\infty}f_n(x)=0$. (b) Find the limit of $f_n(n)$ as $n\to+\infty$.