This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

1963 Miklós Schweitzer, 6

Show that if $ f(x)$ is a real-valued, continuous function on the half-line $ 0\leq x < \infty$, and \[ \int_0^{\infty} f^2(x)dx <\infty\] then the function \[ g(x)\equal{}f(x)\minus{}2e^{\minus{}x}\int_0^x e^tf(t)dt\] satisfies \[ \int _0^{\infty}g^2(x)dx\equal{}\int_0^{\infty}f^2(x)dx.\] [B. Szokefalvi-Nagy]

2013 Today's Calculation Of Integral, 880

For $a>2$, let $f(t)=\frac{\sin ^ 2 at+t^2}{at\sin at},\ g(t)=\frac{\sin ^ 2 at-t^2}{at\sin at}\ \left(0<|t|<\frac{\pi}{2a}\right)$ and let $C: x^2-y^2=\frac{4}{a^2}\ \left(x\geq \frac{2}{a}\right).$ Answer the questions as follows. (1) Show that the point $(f(t),\ g(t))$ lies on the curve $C$. (2) Find the normal line of the curve $C$ at the point $\left(\lim_{t\rightarrow 0} f(t),\ \lim_{t\rightarrow 0} g(t)\right).$ (3) Let $V(a)$ be the volume of the solid generated by a rotation of the part enclosed by the curve $C$, the nornal line found in (2) and the $x$-axis. Express $V(a)$ in terms of $a$, then find $\lim_{a\to\infty} V(a)$.

1957 Putnam, B2

In order to determine $\frac{1}{A}$ for $A>0$, one can use the iteration $X_{k+1}=X_{k}(2-AX_{k}),$ where $X_0$ is a selected starting value. Find the limitation, if any, on the starting value $X_0$ so that the above iteration converges to $\frac{1}{A}.$

2012 Vietnam National Olympiad, 1

Tags: limit , algebra
Define a sequence $\{x_n\}$ as: $\left\{\begin{aligned}& x_1=3 \\ & x_n=\frac{n+2}{3n}(x_{n-1}+2)\ \ \text{for} \ n\geq 2.\end{aligned}\right.$ Prove that this sequence has a finite limit as $n\to+\infty.$ Also determine the limit.

2011 Today's Calculation Of Integral, 750

Let $a_n\ (n\geq 1)$ be the value for which $\int_x^{2x} e^{-t^n}dt\ (x\geq 0)$ is maximal. Find $\lim_{n\to\infty} \ln a_n.$

2009 Kyrgyzstan National Olympiad, 8

Tags: function , limit , algebra
Does there exist a function $ f: {\Bbb N} \to {\Bbb N}$ such that $ f(f(n \minus{} 1)) \equal{} f(n \plus{} 1) \minus{} f(n)$ for all $ n > 2$.

2013 Romania Team Selection Test, 1

Suppose that $a$ and $b$ are two distinct positive real numbers such that $\lfloor na\rfloor$ divides $\lfloor nb\rfloor$ for any positive integer $n$. Prove that $a$ and $b$ are positive integers.

2012 Putnam, 4

Suppose that $a_0=1$ and that $a_{n+1}=a_n+e^{-a_n}$ for $n=0,1,2,\dots.$ Does $a_n-\log n$ have a finite limit as $n\to\infty?$ (Here $\log n=\log_en=\ln n.$)

2011 Today's Calculation Of Integral, 754

Let $S_n$ be the area of the figure enclosed by a curve $y=x^2(1-x)^n\ (0\leq x\leq 1)$ and the $x$-axis. Find $\lim_{n\to\infty} \sum_{k=1}^n S_k.$

2005 Gheorghe Vranceanu, 4

Let be a sequence of real numbers $ \left( x_n \right)_{n\geqslant 0} $ with $ x_0\neq 0,1 $ and defined as $ x_{n+1}=x_n+x_n^{-1/x_0} . $ [b]a)[/b] Show that the sequence $ \left( x_n\cdot n^{-\frac{x_0}{1+x_0}} \right)_{n\geqslant 0} $ is convergent. [b]b)[/b] Prove that $ \inf_{x_0\neq 0,1} \lim_{n\to\infty } x_n\cdot n^{-\frac{x_0}{1+x_0}} =1. $

2000 Harvard-MIT Mathematics Tournament, 18

What is the value of $ \sum_{n=1}^\infty (\tan^{-1}\sqrt{n}-\tan^{-1}\sqrt{n+1})$?

2014 BMT Spring, 5

Determine $$\lim_{x\to\infty}\frac{\sqrt{x+2014}}{\sqrt x+\sqrt{x+2014}}$$

2011 Uzbekistan National Olympiad, 2

Prove that $ \forall n\in\mathbb{N}$,$ \exists a,b,c\in$$\bigcup_{k\in\mathbb{N}}(k^{2},k^{2}+k+3\sqrt 3) $ such that $n=\frac{ab}{c}$.

2008 Harvard-MIT Mathematics Tournament, 4

([b]4[/b]) Let $ a$, $ b$ be constants such that $ \lim_{x\rightarrow1}\frac {(\ln(2 \minus{} x))^2}{x^2 \plus{} ax \plus{} b} \equal{} 1$. Determine the pair $ (a,b)$.

2020 LIMIT Category 2, 10

In a triangle $\triangle XYZ$, $\tan(x)\tan(z)=2$, $\tan(y)\tan(z)=18$. Then what is $\tan^2(z)$?

2001 Romania National Olympiad, 4

Let $f:[0,\infty )\rightarrow\mathbb{R}$ be a periodical function, with period $1$, integrable on $[0,1]$. For a strictly increasing and unbounded sequence $(x_n)_{n\ge 0},\, x_0=0,$ with $\lim_{n\rightarrow\infty} (x_{n+1}-x_n)=0$, we denote $r(n)=\max \{ k\mid x_k\le n\}$. a) Show that: \[\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{k=1}^{r(n)}(x_k-x_{k+1})f(x_k)=\int_0^1 f(x)\, dx\] b) Show that: \[ \lim_{n\rightarrow\infty} \frac{1}{\ln n}\sum_{k=1}^{r(n)}\frac{f(\ln k)}{k}=\int_0^1f(x)\, dx\]

2018 District Olympiad, 3

Let $(a_n)_{n\ge 1}$ be a sequence such that $a_n > 1$ and $a_{n+1}^2 \ge a_n a_{n + 2}$, for any $n\ge 1$. Show that the sequence $(x_n)_{n\ge 1}$ given by $x_n = \log_{a_n} a_{n + 1}$ for $n\ge 1$ is convergent and compute its limit.

Today's calculation of integrals, 864

Let $m,\ n$ be positive integer such that $2\leq m<n$. (1) Prove the inequality as follows. \[\frac{n+1-m}{m(n+1)}<\frac{1}{m^2}+\frac{1}{(m+1)^2}+\cdots +\frac{1}{(n-1)^2}+\frac{1}{n^2}<\frac{n+1-m}{n(m-1)}\] (2) Prove the inequality as follows. \[\frac 32\leq \lim_{n\to\infty} \left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)\leq 2\] (3) Prove the inequality which is made precisely in comparison with the inequality in (2) as follows. \[\frac {29}{18}\leq \lim_{n\to\infty} \left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)\leq \frac{61}{36}\]

2012 Today's Calculation Of Integral, 786

For each positive integer $n$, define $H_n(x)=(-1)^ne^{x^2}\frac{d^n}{dx^n}e^{-x^2}.$ (1) Find $H_1(x),\ H_2(x),\ H_3(x)$. (2) Express $\frac{d}{dx}H_n(x)$ interms of $H_n(x),\ H_{n+1}(x).$ Then prove that $H_n(x)$ is a polynpmial with degree $n$ by induction. (3) Let $a$ be real number. For $n\geq 3$, express $S_n(a)=\int_0^a xH_n(x)e^{-x^2}dx$ in terms of $H_{n-1}(a),\ H_{n-2}(a),\ H_{n-2}(0)$. (4) Find $\lim_{a\to\infty} S_6(a)$. If necessary, you may use $\lim_{x\to\infty}x^ke^{-x^2}=0$ for a positive integer $k$.

2005 Today's Calculation Of Integral, 31

Evaluate \[\lim_{n\to\infty} \int_0^{\pi} x^2 |\sin nx| dx\]

2000 VJIMC, Problem 3

Let $a_1,a_2,\ldots$ be a bounded sequence of reals. Is it true that the fact $$\lim_{N\to\infty}\frac1N\sum_{n=1}^Na_n=b\enspace\text{ and }\enspace\lim_{N\to\infty}\frac1{\log N}\sum_{n=1}^N\frac{a_n}n=c$$implies $b=c$?

2000 Putnam, 3

Let $f(t) = \displaystyle\sum_{j=1}^{N} a_j \sin (2\pi jt)$, where each $a_j$ is areal and $a_N$ is not equal to $0$. Let $N_k$ denote the number of zeroes (including multiplicites) of $\dfrac{d^k f}{dt^k}$. Prove that \[ N_0 \le N_1 \le N_2 \le \cdots \text { and } \lim_{k \rightarrow \infty} N_k = 2N. \] [color=green][Only zeroes in [0, 1) should be counted.][/color]

2001 Austrian-Polish Competition, 2

Let $n$ be a positive integer greater than $2$. Solve in nonnegative real numbers the following system of equations \[x_{k}+x_{k+1}=x_{k+2}^{2}\quad , \quad k=1,2,\cdots,n\] where $x_{n+1}=x_{1}$ and $x_{n+2}=x_{2}$.

1957 Putnam, A6

Tags: limit , logarithm
Let $a>0$, $S_1 =\ln a$ and $S_n = \sum_{i=1 }^{n-1} \ln( a- S_i )$ for $n >1.$ Show that $$ \lim_{n \to \infty} S_n = a-1.$$

1983 IMO Longlists, 46

Let $f$ be a real-valued function defined on $I = (0,+\infty)$ and having no zeros on $I$. Suppose that \[\lim_{x \to +\infty} \frac{f'(x)}{f(x)}=+\infty.\] For the sequence $u_n = \ln \left| \frac{f(n+1)}{f(n)} \right|$, prove that $u_n \to +\infty$ as $n \to +\infty.$