This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

2008 Hong Kong TST, 2

Let $ a$, $ b$, $ c$ be the three sides of a triangle. Determine all possible values of \[ \frac{a^2\plus{}b^2\plus{}c^2}{ab\plus{}bc\plus{}ca}\]

2012 NIMO Problems, 7

For every pair of reals $0 < a < b < 1$, we define sequences $\{x_n\}_{n \ge 0}$ and $\{y_n\}_{n \ge 0}$ by $x_0 = 0$, $y_0 = 1$, and for each integer $n \ge 1$: \begin{align*} x_n & = (1 - a) x_{n - 1} + a y_{n - 1}, \\ y_n & = (1 - b) x_{n - 1} + b y_{n - 1}. \end{align*} The [i]supermean[/i] of $a$ and $b$ is the limit of $\{x_n\}$ as $n$ approaches infinity. Over all pairs of real numbers $(p, q)$ satisfying $\left (p - \textstyle\frac{1}{2} \right)^2 + \left (q - \textstyle\frac{1}{2} \right)^2 \le \left(\textstyle\frac{1}{10}\right)^2$, the minimum possible value of the supermean of $p$ and $q$ can be expressed as $\textstyle\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $100m + n$. [i]Proposed by Lewis Chen[/i]

2004 Alexandru Myller, 2

$\lim_{n\to\infty } \sum_{1\le i\le j\le n} \frac{\ln (1+i/n)\cdot\ln (1+j/n)}{\sqrt{n^4+i^2+j^2}} $ [i]Gabriel Mîrșanu[/i] and [i]Andrei Nedelcu[/i]

2010 Tuymaada Olympiad, 4

Prove that for any positive real number $\alpha$, the number $\lfloor\alpha n^2\rfloor$ is even for infinitely many positive integers $n$.

1947 Putnam, A5

Tags: limit , sum , sequence
Let $a_1 , b_1 , c_1$ be positive real numbers whose sum is $1,$ and for $n=1, 2, \ldots$ we define $$a_{n+1}= a_{n}^{2} +2 b_n c_n, \;\;\;b_{n+1}= b_{n}^{2} +2 a_n c_n, \;\;\; c_{n+1}= c_{n}^{2} +2 a_n b_n.$$ Show that $a_n , b_n ,c_n$ approach limits as $n\to \infty$ and find those limits.

1982 IMO Shortlist, 3

Consider infinite sequences $\{x_n\}$ of positive reals such that $x_0=1$ and $x_0\ge x_1\ge x_2\ge\ldots$. [b]a)[/b] Prove that for every such sequence there is an $n\ge1$ such that: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}\ge3.999. \] [b]b)[/b] Find such a sequence such that for all $n$: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}<4. \]

2007 Harvard-MIT Mathematics Tournament, 1

Tags: calculus , limit
Compute: \[\lim_{x\to 0}\text{ }\dfrac{x^2}{1-\cos(x)}\]

2005 Romania National Olympiad, 4

Tags: algebra , function , limit
Let $f:\mathbb{R}\to\mathbb{R}$ be a convex function. a) Prove that $f$ is continous; b) Prove that there exists an unique function $g:[0,\infty)\to\mathbb{R}$ such that for all $x\geq 0$ we have \[ f(x+g(x)) = f(g(x)) - g(x) . \]

2012 Today's Calculation Of Integral, 854

Given a figure $F: x^2+\frac{y^2}{3}=1$ on the coordinate plane. Denote by $S_n$ the area of the common part of the $n+1' s$ figures formed by rotating $F$ of $\frac{k}{2n}\pi\ (k=0,\ 1,\ 2,\ \cdots,\ n)$ radians counterclockwise about the origin. Find $\lim_{n\to\infty} S_n$.

2011 Today's Calculation Of Integral, 768

Let $r$ be a real such that $0<r\leq 1$. Denote by $V(r)$ the volume of the solid formed by all points of $(x,\ y,\ z)$ satisfying \[x^2+y^2+z^2\leq 1,\ x^2+y^2\leq r^2\] in $xyz$-space. (1) Find $V(r)$. (2) Find $\lim_{r\rightarrow 1-0} \frac{V(1)-V(r)}{(1-r)^{\frac 32}}.$ (3) Find $\lim_{r\rightarrow +0} \frac{V(r)}{r^2}.$

1992 Putnam, A4

Let $ f$ be an infinitely differentiable real-valued function defined on the real numbers. If $ f(1/n)\equal{}\frac{n^{2}}{n^{2}\plus{}1}, n\equal{}1,2,3,...,$ Compute the values of the derivatives of $ f^{k}(0), k\equal{}0,1,2,3,...$

1970 Putnam, B1

Tags: limit
Evaluate $$\lim_{n\to \infty} \frac{1}{n^4 } \prod_{i=1}^{2n} (n^2 +i^2 )^{\frac{1}{n}}.$$

1989 IMO Longlists, 5

The sequences $ a_0, a_1, \ldots$ and $ b_0, b_1, \ldots$ are defined for $ n \equal{} 0, 1, 2, \ldots$ by the equalities \[ a_0 \equal{} \frac {\sqrt {2}}{2}, \quad a_{n \plus{} 1} \equal{} \frac {\sqrt {2}}{2} \cdot \sqrt {1 \minus{} \sqrt {1 \minus{} a^2_n}} \] and \[ b_0 \equal{} 1, \quad b_{n \plus{} 1} \equal{} \frac {\sqrt {1 \plus{} b^2_n} \minus{} 1}{b_n} \] Prove the inequalities for every $ n \equal{} 0, 1, 2, \ldots$ \[ 2^{n \plus{} 2} a_n < \pi < 2^{n \plus{} 2} b_n. \]

2012 IFYM, Sozopol, 5

Let $c_0,c_1>0$. And suppose the sequence $\{c_n\}_{n\ge 0}$ satisfies \[ c_{n+1}=\sqrt{c_n}+\sqrt{c_{n-1}}\quad \text{for} \;n\ge 1 \] Prove that $\lim_{n\to \infty}c_n$ exists and find its value. [i]Proposed by Sadovnichy-Grigorian-Konyagin[/i]

2007 Pre-Preparation Course Examination, 1

Let $a\geq 2$ be a natural number. Prove that $\sum_{n=0}^\infty\frac1{a^{n^{2}}}$ is irrational.

2020 LIMIT Category 1, 9

What is the sum of all two-digit positive integer $n<50$ for which the sum of the squares of first $n$ positive integers is not a divisor of $(2n)!$ ?

1986 Traian Lălescu, 1.1

Let $ a $ be a positive real number. Calculate $ \lim_{n\to\infty} \frac{a^n}{(1+a)(1+a^2)\cdots (1+a^n)} . $

2008 Iran MO (3rd Round), 3

For each $ c\in\mathbb C$, let $ f_c(z,0)\equal{}z$, and $ f_c(z,n)\equal{}f_c(z,n\minus{}1)^2\plus{}c$ for $ n\geq1$. a) Prove that if $ |c|\leq\frac14$ then there is a neighborhood $ U$ of origin such that for each $ z\in U$ the sequence $ f_c(z,n),n\in\mathbb N$ is bounded. b) Prove that if $ c>\frac14$ is a real number there is a neighborhood $ U$ of origin such that for each $ z\in U$ the sequence $ f_c(z,n),n\in\mathbb N$ is unbounded.

2005 Grigore Moisil Urziceni, 2

[b]a)[/b] Prove that $ \lim_{x\to\infty } \sqrt{x}\cdot\sum_{k=1}^{\lfloor \sqrt{x} \rfloor} \frac{1}{k+x}=1. $ [b]b)[/b] Show that $ \lim_{x\to\infty } \left( -\left\lfloor\sqrt{x}\right\rfloor +x\cdot\sum_{k=1}^{\lfloor \sqrt{x} \rfloor} \frac{1}{k+x} \right) =\frac{-1}{2} $ [b]c)[/b] What about $ \lim_{x\to\infty } \left( -\sqrt{x} +x\cdot\sum_{k=1}^{\lfloor \sqrt{x} \rfloor} \frac{1}{k+x} \right) ? $

1987 Traian Lălescu, 1.4

[b]a)[/b] Determine all sequences of real numbers $ \left( x_n\right)_{n\in\mathbb{N}\cup\{ 0\}} $ that satisfy $ x_{n+2}+x_{n+1}=x_n, $ for any nonnegative integer $ n. $ [b]b)[/b] If $ y_k>0 $ and $ y_k^k=y_k+k, $ for all naturals $ k, $ calculate $ \lim_{n\to\infty }\frac{\ln n}{n\left( x_n-1\right)} . $

2025 VJIMC, 1

Let $x_0=a, x_1= b, x_2 = c$ be given real numbers and let $x_{n+2} = \frac{x_n + x_{n-1}}{2}$ for all $n\geq 1$. Show that the sequence $(x_n)_{n\geq 0}$ converges and find its limit.

1983 Miklós Schweitzer, 5

Let $ g : \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $ x+g(x)$ is strictly monotone (increasing or decreasing), and let $ u : [0,\infty) \rightarrow \mathbb{R}$ be a bounded and continuous function such that \[ u(t)+ \int_{t-1}^tg(u(s))ds\] is constant on $ [1,\infty)$. Prove that the limit $ \lim_{t\rightarrow \infty} u(t)$ exists. [i]T. Krisztin[/i]

2019 Centers of Excellency of Suceava, 2

Let be two real numbers $ b>a>0, $ and a sequence $ \left( x_n \right)_{n\ge 1} $ with $ x_2>x_1>0 $ and such that $$ ax_{n+2}+bx_n\ge (a+b)x_{n+1} , $$ for any natural numbers $ n. $ Prove that $ \lim_{n\to\infty } x_n=\infty . $ [i]Dan Popescu[/i]

2012 Today's Calculation Of Integral, 807

Define a sequence $a_n$ satisfying : \[a_1=1,\ \ a_{n+1}=\frac{na_n}{2+n(a_n+1)}\ (n=1,\ 2,\ 3,\ \cdots).\] Find $\lim_{m\to\infty} m\sum_{n=m+1}^{2m} a_n.$

2007 Today's Calculation Of Integral, 192

Let $t$ be positive number. Draw two tangent lines to the palabola $y=x^{2}$ from the point $(t,-1).$ Denote the area of the region bounded by these tangent lines and the parabola by $S(t).$ Find the minimum value of $\frac{S(t)}{\sqrt{t}}.$