This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 75

2023 4th Memorial "Aleksandar Blazhevski-Cane", P1

Let $n$ be a fixed positive integer and fix a point $O$ in the plane. There are $n$ lines drawn passing through the point $O$. Determine the largest $k$ (depending on $n$) such that we can always color $k$ of the $n$ lines red in such a way that no two red lines are perpendicular to each other. [i]Proposed by Nikola Velov[/i]

2018 Dutch IMO TST, 1

A set of lines in the plan is called [i]nice [/i]i f every line in the set intersects an odd number of other lines in the set. Determine the smallest integer $k \ge 0$ having the following property: for each $2018$ distinct lines $\ell_1, \ell_2, ..., \ell_{2018}$ in the plane, there exist lines $\ell_{2018+1},\ell_{2018+2}, . . . , \ell_{2018+k}$ such that the lines $\ell_1, \ell_2, ..., \ell_{2018+k}$ are distinct and form a [i]nice [/i] set.

2013 Junior Balkan Team Selection Tests - Romania, 3

Tags: circles , line , geometry
Consider a circle centered at $O$ with radius $r$ and a line $\ell$ not passing through $O$. A grasshopper is jumping to and fro between the points of the circle and the line, the length of each jump being $r$. Prove that there are at most $8$ points for the grasshopper to reach.

EGMO 2017, 3

There are $2017$ lines in the plane such that no three of them go through the same point. Turbo the snail sits on a point on exactly one of the lines and starts sliding along the lines in the following fashion: she moves on a given line until she reaches an intersection of two lines. At the intersection, she follows her journey on the other line turning left or right, alternating her choice at each intersection point she reaches. She can only change direction at an intersection point. Can there exist a line segment through which she passes in both directions during her journey?

2009 Germany Team Selection Test, 2

Let $ k$ and $ n$ be integers with $ 0\le k\le n \minus{} 2$. Consider a set $ L$ of $ n$ lines in the plane such that no two of them are parallel and no three have a common point. Denote by $ I$ the set of intersections of lines in $ L$. Let $ O$ be a point in the plane not lying on any line of $ L$. A point $ X\in I$ is colored red if the open line segment $ OX$ intersects at most $ k$ lines in $ L$. Prove that $ I$ contains at least $ \dfrac{1}{2}(k \plus{} 1)(k \plus{} 2)$ red points. [i]Proposed by Gerhard Woeginger, Netherlands[/i]

2021 Durer Math Competition (First Round), 5

There are $n$ distinct lines in three-dimensional space such that no two lines are parallel and no three lines meet at one point. What is the maximal possible number of planes determined by these $n$ lines? We say that a plane is determined if it contains at least two of the lines.

1978 Bundeswettbewerb Mathematik, 2

A set of $n^2$ counters are labeled with $1,2,\ldots, n$, each label appearing $n$ times. Can one arrange the counters on a line in such a way that for all $x \in \{1,2,\ldots, n\}$, between any two successive counters with the label $x$ there are exactly $x$ counters (with labels different from $x$)?

2011 Oral Moscow Geometry Olympiad, 2

Line $\ell $ intersects the plane $a$. It is known that in this plane there are $2011$ straight lines equidistant from $\ell$ and not intersecting $\ell$. Is it true that $\ell$ is perpendicular to $a$?

2022 Turkey EGMO TST, 5

We are given three points $A,B,C$ on a semicircle. The tangent lines at $A$ and $B$ to the semicircle meet the extension of the diameter at points $M,N$ respectively. The line passing through $A$ that is perpendicular to the diameter meets $NC$ at $R$, and the line passing through $B$ that is perpendicular to the diameter meets $MC$ at $S$. If the line $RS$ meets the extension of the diameter at $Z$, prove that $ZC$ is tangent to the semicircle.

1976 Vietnam National Olympiad, 5

$L, L'$ are two skew lines in space and $p$ is a plane not containing either line. $M$ is a variable line parallel to $p$ which meets $L$ at $X$ and $L'$ at $Y$. Find the position of $M$ which minimises the distance $XY$. $L''$ is another fixed line. Find the line $M$ which is also perpendicular to $L''$ .

Kvant 2019, M2558

$2019$ point grasshoppers sit on a line. At each move one of the grasshoppers jumps over another one and lands at the point the same distance away from it. Jumping only to the right, the grasshoppers are able to position themselves so that some two of them are exactly $1$ mm apart. Prove that the grasshoppers can achieve the same, jumping only to the left and starting from the initial position. (Sergey Dorichenko)

2016 Singapore Senior Math Olympiad, 2

Let $n$ be a positive integer. Determine the minimum number of lines that can be drawn on the plane so that they intersect in exactly $n$ distinct points.

1947 Moscow Mathematical Olympiad, 126

Given a convex pentagon $ABCDE$, prove that if an arbitrary point $M$ inside the pentagon is connected by lines with all the pentagon’s vertices, then either one or three or five of these lines cross the sides of the pentagon opposite the vertices they pass. Note: In reality, we need to exclude the points of the diagonals, because that in this case the drawn lines can pass not through the internal points of the sides, but through the vertices. But if the drawn diagonals are not considered or counted twice (because they are drawn from two vertices), then the statement remains true.

2017 EGMO, 3

There are $2017$ lines in the plane such that no three of them go through the same point. Turbo the snail sits on a point on exactly one of the lines and starts sliding along the lines in the following fashion: she moves on a given line until she reaches an intersection of two lines. At the intersection, she follows her journey on the other line turning left or right, alternating her choice at each intersection point she reaches. She can only change direction at an intersection point. Can there exist a line segment through which she passes in both directions during her journey?

1996 North Macedonia National Olympiad, 5

Find the greatest $n$ for which there exist $n$ lines in space, passing through a single point, such that any two of them form the same angle.

1987 Tournament Of Towns, (153) 4

We are given a figure bounded by arc $AC$ of a circle, and a broken line $ABC$, with the arc and broken line being on opposite sides of the chord $AC$. Construct a line passing through the mid-point of arc $AC$ and dividing the area of the figure into two regions of equal area.

1997 Estonia National Olympiad, 4

There are $19$ lines in the plane dividing the plane into exactly $97$ pieces. (a) Prove that among these pieces there is at least one triangle. (b) Show that it is indeed possible to place $19$ lines in the above way.

1981 Austrian-Polish Competition, 8

The plane has been partitioned into $N$ regions by three bunches of parallel lines. What is the least number of lines needed in order that $N > 1981$?

2002 Junior Balkan Team Selection Tests - Moldova, 2

$64$ distinct points are positioned in the plane so that they determine exactly $2003$ different lines. Prove that among the $64$ points there are at least $4$ collinear points.

1949-56 Chisinau City MO, 58

On the plane $n$ points are chosen so that exactly $m$ of them lie on one straight line and no three points not included in these $m$ points lie on one straight line. What is the number of all lines, each of which contains at least two of these points?

1947 Putnam, A3

Tags: polygon , line , geometry
Given a triangle $ABC$ with an interior point $P$ and points $Q_1 , Q_2$ not lying on any of the segments $AB , AC ,BC,$ $AP ,BP ,CP,$ show that there does not exist a polygonal line $K$ joining $Q_1$ and $Q_2$ such that i) $K$ crosses each segment exactly once, ii) $K$ does not intersect itself iii) $K$ does not pass through $A, B , C$ or $P.$

1998 Singapore MO Open, 2

Let $N$ be the set of natural numbers, and let $f: N \to N$ be a function satisfying $f(x) + f(x + 2) < 2 f(x + 1)$ for any $x \in N$. Prove that there exists a straight line in the $xy$-plane which contains infinitely many points with coordinates $(n,f(n))$.

2018 Thailand TSTST, 2

$9$ horizontal and $9$ vertical lines are drawn through a square. Prove that it is possible to select $20$ rectangles so that the sides of each rectangle is a segment of one of the given lines (including the sides of the square), and for any two of the $20$ rectangles, it is possible to cover one of them with the other (rotations are allowed).

2005 Sharygin Geometry Olympiad, 18

On the plane are three straight lines $\ell_1, \ell_2,\ell_3$, forming a triangle, and the point $O$ is marked, the center of the circumscribed circle of this triangle. For an arbitrary point X of the plane, we denote by $X_i$ the point symmetric to the point X with respect to the line $\ell_i, i = 1,2,3$. a) Prove that for an arbitrary point $M$ the straight lines connecting the midpoints of the segments $O_1O_2$ and $M_1M_2, O_2O_3$ and $M_2M_3, O_3O_1$ and $M_3M_1$ intersect at one point, b) where can this intersection point lie?

1991 All Soviet Union Mathematical Olympiad, 537

Four lines in the plane intersect in six points. Each line is thus divided into two segments and two rays. Is it possible for the eight segments to have lengths $1, 2, 3, ... , 8$? Can the lengths of the eight segments be eight distinct integers?