This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 823

1997 Brazil Team Selection Test, Problem 3

Find all positive integers $x>1, y$ and primes $p,q$ such that $p^{x}=2^{y}+q^{x}$

1994 China Team Selection Test, 1

Given $5n$ real numbers $r_i, s_i, t_i, u_i, v_i \geq 1 (1 \leq i \leq n)$, let $R = \frac {1}{n} \sum_{i=1}^{n} r_i$, $S = \frac {1}{n} \sum_{i=1}^{n} s_i$, $T = \frac {1}{n} \sum_{i=1}^{n} t_i$, $U = \frac {1}{n} \sum_{i=1}^{n} u_i$, $V = \frac {1}{n} \sum_{i=1}^{n} v_i$. Prove that $\prod_{i=1}^{n}\frac {r_i s_i t_i u_i v_i + 1}{r_i s_i t_i u_i v_i - 1} \geq \left(\frac {RSTUV +1}{RSTUV - 1}\right)^n$.

2013 Olympic Revenge, 5

Consider $n$ lamps clockwise numbered from $1$ to $n$ on a circle. Let $\xi$ to be a configuration where $0 \le \ell \le n$ random lamps are turned on. A [i]cool procedure[/i] consists in perform, simultaneously, the following operations: for each one of the $\ell$ lamps which are turned on, we verify the number of the lamp; if $i$ is turned on, a [i]signal[/i] of range $i$ is sent by this lamp, and it will be received only by the next $i$ lamps which follow $i$, turned on or turned off, also considered clockwise. At the end of the operations we verify, for each lamp, turned on or turned off, how many signals it has received. If it was reached by an even number of signals, it remains on the same state(that is, if it was turned on, it will be turned on; if it was turned off, it will be turned off). Otherwise, it's state will be changed. The example in attachment, for $n=4$, ilustrates a configuration where lamps $2$ and $4$ are initially turned on. Lamp $2$ sends signal only for the lamps $3$ e $4$, while lamp $4$ sends signal for lamps $1$, $2$, $3$ e $4$. Therefore, we verify that lamps $1$ e $2$ received only one signal, while lamps $3$ e $4$ received two signals. Therefore, in the next configuration, lamps $1$ e $4$ will be turned on, while lamps $2$ e $3$ will be turned off. Let $\Psi$ to be the set of all $2^n$ possible configurations, where $0 \le \ell \le n$ random lamps are turned on. We define a function $f: \Psi \rightarrow \Psi$ where, if $\xi$ is a configuration of lamps, then $f(\xi)$ is the configurations obtained after we perform the [i]cool procedure[/i] described above. Determine all values of $n$ for which $f$ is bijective.

1987 IMO Shortlist, 15

Let $x_1,x_2,\ldots,x_n$ be real numbers satisfying $x_1^2+x_2^2+\ldots+x_n^2=1$. Prove that for every integer $k\ge2$ there are integers $a_1,a_2,\ldots,a_n$, not all zero, such that $|a_i|\le k-1$ for all $i$, and $|a_1x_1+a_2x_2+\ldots+a_nx_n|\le{(k-1)\sqrt n\over k^n-1}$. [i](IMO Problem 3)[/i] [i]Proposed by Germany, FR[/i]

1974 Spain Mathematical Olympiad, 3

We will designate by $Z_{(5)}$ a certain subset of the set $Q$ of the rational numbers . A rational belongs to $Z_{(5)}$ if and only if there exist equal fraction to this rational such that $5$ is not a divisor of its denominator. (For example, the rational number $13/10$ does not belong to $Z_{(5)}$ , since the denominator of all fractions equal to $13/10$ is a multiple of $5$. On the other hand, the rational $75/10$ belongs to $Z_{(5)}$ since that $75/10 = 15/12$). Reasonably answer the following questions: a) What algebraic structure (semigroup, group, etc.) does $Z_{(5)}$ have with respect to the sum? b) And regarding the product? c) Is $Z_{(5)}$ a subring of $Q$? d) Is $Z_{(5)}$ a vector space?

1971 IMO Longlists, 43

Let $ A \equal{} (a_{ij})$, where $ i,j \equal{} 1,2,\ldots,n$, be a square matrix with all $ a_{ij}$ non-negative integers. For each $ i,j$ such that $ a_{ij} \equal{} 0$, the sum of the elements in the $ i$th row and the $ j$th column is at least $ n$. Prove that the sum of all the elements in the matrix is at least $ \frac {n^2}{2}$.

2005 Germany Team Selection Test, 3

For an ${n\times n}$ matrix $A$, let $X_{i}$ be the set of entries in row $i$, and $Y_{j}$ the set of entries in column $j$, ${1\leq i,j\leq n}$. We say that $A$ is [i]golden[/i] if ${X_{1},\dots ,X_{n},Y_{1},\dots ,Y_{n}}$ are distinct sets. Find the least integer $n$ such that there exists a ${2004\times 2004}$ golden matrix with entries in the set ${\{1,2,\dots ,n\}}$.

1961 Miklós Schweitzer, 4

[b]4.[/b] Let $f(x)$ be a real- or complex-value integrable function on $(0,1)$ with $\mid f(x) \mid \leq 1 $. Set $ c_k = \int_0^1 f(x) e^{-2 \pi i k x} dx $ and construct the following matrices of order $n$: $ T= (t_{pq})_{p,q=0}^{n-1}, T^{*}= (t_{pq}^{*})_{p,q =0}^{n-1} $ where $t_{pq}= c_{q-p}, t^{*}= \overline {c_{p-q}}$ . Further, consider the following hyper-matrix of order $m$: $ S= \begin{bmatrix} E & T & T^2 & \dots & T^{m-2} & T^{m-1} \\ T^{*} & E & T & \dots & T^{m-3} & T^{m-2} \\ T^{*2} & T^{*} & E & \dots & T^{m-3} & T^{m-2} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ T^{*m-1} & T^{*m-2} & T^{*m-3} & \dots & T^{*} & E \end{bmatrix} $ ($S$ is a matrix of order $mn$ in the ordinary sense; E denotes the unit matrix of order $n$). Show that for any pair $(m , n) $ of positive integers, $S$ has only non-negative real eigenvalues. [b](R. 19)[/b]

2014 CHMMC (Fall), 2

A matrix $\begin{bmatrix} x & y \\ z & w \end{bmatrix}$ has square root $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ if $$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^2 = \begin{bmatrix} a^2 + bc &ab + bd \\ ac + cd & bc + d^2 \end{bmatrix} = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$$ Determine how many square roots the matrix $\begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix}$ has (complex coefficients are allowed).

1997 Kurschak Competition, 1

Let $p>2$ be a prime number and let $L=\{0,1,\dots,p-1\}^2$. Prove that we can find $p$ points in $L$ with no three of them collinear.

2010 Contests, 4

the code system of a new 'MO lock' is a regular $n$-gon,each vertex labelled a number $0$ or $1$ and coloured red or blue.it is known that for any two adjacent vertices,either their numbers or colours coincide. find the number of all possible codes(in terms of $n$).

1992 Putnam, B6

Let $M$ be a set of real $n \times n$ matrices such that i) $I_{n} \in M$, where $I_n$ is the identity matrix. ii) If $A\in M$ and $B\in M$, then either $AB\in M$ or $-AB\in M$, but not both iii) If $A\in M$ and $B \in M$, then either $AB=BA$ or $AB=-BA$. iv) If $A\in M$ and $A \ne I_n$, there is at least one $B\in M$ such that $AB=-BA$. Prove that $M$ contains at most $n^2 $ matrices.

MathLinks Contest 7th, 1.3

We are given the finite sets $ X$, $ A_1$, $ A_2$, $ \dots$, $ A_{n \minus{} 1}$ and the functions $ f_i: \ X\rightarrow A_i$. A vector $ (x_1,x_2,\dots,x_n)\in X^n$ is called [i]nice[/i], if $ f_i(x_i) \equal{} f_i(x_{i \plus{} 1})$, for each $ i \equal{} 1,2,\dots,n \minus{} 1$. Prove that the number of nice vectors is at least \[ \frac {|X|^n}{\prod\limits_{i \equal{} 1}^{n \minus{} 1} |A_i|}. \]

1997 IMC, 2

Let $M \in GL_{2n}(K)$, represented in block form as \[ M = \left[ \begin{array}{cc} A & B \\ C & D \end{array} \right] , M^{-1} = \left[ \begin{array}{cc} E & F \\ G & H \end{array} \right] \] Show that $\det M.\det H=\det A$.

1984 IMO Longlists, 64

For a matrix $(p_{ij})$ of the format $m\times n$ with real entries, set \[a_i =\displaystyle\sum_{j=1}^n p_{ij}\text{ for }i = 1,\cdots,m\text{ and }b_j =\displaystyle\sum_{i=1}^m p_{ij}\text{ for }j = 1, . . . , n\longrightarrow(1)\] By integering a real number, we mean replacing the number with the integer closest to it. Prove that integering the numbers $a_i, b_j, p_{ij}$ can be done in such a way that $(1)$ still holds.

2006 Cezar Ivănescu, 2

[b]a)[/b] Let $ a,b,c $ be three complex numbers. Prove that the element $ \begin{pmatrix} a & a-b & a-b \\ 0 & b & b-c \\ 0 & 0 & c \end{pmatrix} $ has finite order in the multiplicative group of $ 3\times 3 $ complex matrices if and only if $ a,b,c $ have finite orders in the multiplicative group of complex numbers. [b]b)[/b] Prove that a $ 3\times 3 $ real matrix $ M $ has positive determinant if there exists a real number $ \lambda\in\left( 0,\sqrt[3]{4} \right) $ such that $ A^3=\lambda A+I. $ [i]Cristinel Mortici[/i]

1998 IMC, 1

Let $V$ be a 10-dimensional real vector space and $U_1,U_2$ two linear subspaces such that $U_1 \subseteq U_2, \dim U_1 =3, \dim U_2=6$. Let $\varepsilon$ be the set of all linear maps $T: V\rightarrow V$ which have $T(U_1)\subseteq U_1, T(U_2)\subseteq U_2$. Calculate the dimension of $\varepsilon$. (again, all as real vector spaces)

2008 Harvard-MIT Mathematics Tournament, 9

A Sudoku matrix is defined as a $ 9\times9$ array with entries from $ \{1, 2, \ldots , 9\}$ and with the constraint that each row, each column, and each of the nine $ 3 \times 3$ boxes that tile the array contains each digit from $ 1$ to $ 9$ exactly once. A Sudoku matrix is chosen at random (so that every Sudoku matrix has equal probability of being chosen). We know two of the squares in this matrix, as shown. What is the probability that the square marked by ? contains the digit $ 3$? $ \setlength{\unitlength}{6mm} \begin{picture}(9,9)(0,0) \multiput(0,0)(1,0){10}{\line(0,1){9}} \multiput(0,0)(0,1){10}{\line(1,0){9}} \linethickness{1.2pt} \multiput(0,0)(3,0){4}{\line(0,1){9}} \multiput(0,0)(0,3){4}{\line(1,0){9}} \put(0,8){\makebox(1,1){1}} \put(1,7){\makebox(1,1){2}} \put(3,6){\makebox(1,1){?}} \end{picture}$

1976 IMO Shortlist, 5

We consider the following system with $q=2p$: \[\begin{matrix} a_{11}x_{1}+\ldots+a_{1q}x_{q}=0,\\ a_{21}x_{1}+\ldots+a_{2q}x_{q}=0,\\ \ldots ,\\ a_{p1}x_{1}+\ldots+a_{pq}x_{q}=0,\\ \end{matrix}\] in which every coefficient is an element from the set $\{-1,0,1\}$$.$ Prove that there exists a solution $x_{1}, \ldots,x_{q}$ for the system with the properties: [b]a.)[/b] all $x_{j}, j=1,\ldots,q$ are integers$;$ [b]b.)[/b] there exists at least one j for which $x_{j} \neq 0;$ [b]c.)[/b] $|x_{j}| \leq q$ for any $j=1, \ldots ,q.$

2008 SEEMOUS, Problem 3

Let $\mathcal M_n(\mathbb R)$ denote the set of all real $n\times n$ matrices. Find all surjective functions $f:\mathcal M_n(\mathbb R)\to\{0,1,\ldots,n\}$ which satisfy $$f(XY)\le\min\{f(X),f(Y)\}$$for all $X,Y\in\mathcal M_n(\mathbb R)$.

2003 China Team Selection Test, 2

In triangle $ABC$, the medians and bisectors corresponding to sides $BC$, $CA$, $AB$ are $m_a$, $m_b$, $m_c$ and $w_a$, $w_b$, $w_c$ respectively. $P=w_a \cap m_b$, $Q=w_b \cap m_c$, $R=w_c \cap m_a$. Denote the areas of triangle $ABC$ and $PQR$ by $F_1$ and $F_2$ respectively. Find the least positive constant $m$ such that $\frac{F_1}{F_2}<m$ holds for any $\triangle{ABC}$.

1965 IMO, 2

Consider the sytem of equations \[ a_{11}x_1+a_{12}x_2+a_{13}x_3 = 0 \]\[a_{21}x_1+a_{22}x_2+a_{23}x_3 =0\]\[a_{31}x_1+a_{32}x_2+a_{33}x_3 = 0 \] with unknowns $x_1, x_2, x_3$. The coefficients satisfy the conditions: a) $a_{11}, a_{22}, a_{33}$ are positive numbers; b) the remaining coefficients are negative numbers; c) in each equation, the sum ofthe coefficients is positive. Prove that the given system has only the solution $x_1=x_2=x_3=0$.

2012 Pre-Preparation Course Examination, 6

Suppose that $V$ is a finite dimensional vector space over the real numbers equipped with an inner product and $S:V\times V \longrightarrow \mathbb R$ is a skew symmetric function that is linear for each variable when others are kept fixed. Prove there exists a linear transformation $T:V \longrightarrow V$ such that $\forall u,v \in V: S(u,v)=<u,T(v)>$. We know that there always exists $v\in V$ such that $W=<v,T(v)>$ is invariant under $T$. (it means $T(W)\subseteq W$). Prove that if $W$ is invariant under $T$ then the following subspace is also invariant under $T$: $W^{\perp}=\{v\in V:\forall u\in W <v,u>=0\}$. Prove that if dimension of $V$ is more than $3$, then there exist a two dimensional subspace $W$ of $V$ such that the volume defined on it by function $S$ is zero!!!! (This is the way that we can define a two dimensional volume for each subspace $V$. This can be done for volumes of higher dimensions.)

2009 Miklós Schweitzer, 5

Let $ G$ be a finite non-commutative group of order $ t \equal{} 2^nm$, where $ n, m$ are positive and $ m$ is odd. Prove, that if the group contains an element of order $ 2^n$, then (i) $ G$ is not simple; (ii) $ G$ contains a normal subgroup of order $ m$.

2014 Contests, 2

Let $A$ be the $n\times n$ matrix whose entry in the $i$-th row and $j$-th column is \[\frac1{\min(i,j)}\] for $1\le i,j\le n.$ Compute $\det(A).$