This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 913

PEN G Problems, 20

You are given three lists A, B, and C. List A contains the numbers of the form $10^{k}$ in base 10, with $k$ any integer greater than or equal to 1. Lists B and C contain the same numbers translated into base 2 and 5 respectively: \[\begin{array}{lll}A & B & C \\ 10 & 1010 & 20 \\ 100 & 1100100 & 400 \\ 1000 & 1111101000 & 13000 \\ \vdots & \vdots & \vdots \end{array}.\] Prove that for every integer $n > 1$, there is exactly one number in exactly one of the lists B or C that has exactly $n$ digits.

2012 Today's Calculation Of Integral, 808

For a constant $c$, a sequence $a_n$ is defined by $a_n=\int_c^1 nx^{n-1}\left(\ln \left(\frac{1}{x}\right)\right)^n dx\ (n=1,\ 2,\ 3,\ \cdots).$ Find $\lim_{n\to\infty} a_n$.

2003 AMC 10, 9

Find the value of $ x$ that satisfies the equation \[ 25^{\minus{}2}\equal{}\frac{5^{48/x}}{5^{26/x}\cdot25^{17/x}}. \]$ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 9$

1978 Swedish Mathematical Competition, 4

$b_0, b_1, b_2, \dots$ is a sequence of positive reals such that the sequence $b_0,c b_1, c^2b_2,c^3b_3,\dots$ is convex for all $c > 0$. (A sequence is convex if each term is at most the arithmetic mean of its two neighbors.) Show that $\ln b_0, \ln b_1, \ln b_2, \dots$ is convex.

2014 AIME Problems, 7

Let $f(x) = (x^2+3x+2)^{\cos(\pi x)}$. Find the sum of all positive integers $n$ for which \[\left| \sum_{k=1}^n \log_{10} f(k) \right| = 1.\]

2013 NIMO Problems, 7

Tags: logarithm
For each integer $k\ge2$, the decimal expansions of the numbers $1024,1024^2,\dots,1024^k$ are concatenated, in that order, to obtain a number $X_k$. (For example, $X_2 = 10241048576$.) If \[ \frac{X_n}{1024^n} \] is an odd integer, find the smallest possible value of $n$, where $n\ge2$ is an integer. [i]Proposed by Evan Chen[/i]

2022 Romania National Olympiad, P1

Tags: logarithm , algebra
Let $a\neq 1$ be a positive real number. Find all real solutions to the equation $a^x=x^x+\log_a(\log_a(x)).$ [i]Mihai Opincariu[/i]

1965 AMC 12/AHSME, 31

Tags: logarithm
The number of real values of $ x$ satisfying the equality $ (\log_2x)(\log_bx) \equal{} \log_ab$, where $ a > 0$, $ b > 0$, $ a \neq 1$, $ b \neq 1$, is: $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ \text{a finite integer greater than 2} \qquad \textbf{(E)}\ \text{not finite}$

2010 Today's Calculation Of Integral, 572

For integer $ n,\ a_n$ is difined by $ a_n\equal{}\int_0^{\frac{\pi}{4}} (\cos x)^ndx$. (1) Find $ a_{\minus{}2},\ a_{\minus{}1}$. (2) Find the relation of $ a_n$ and $ a_{n\minus{}2}$. (3) Prove that $ a_{2n}\equal{}b_n\plus{}\pi c_n$ for some rational number $ b_n,\ c_n$, then find $ c_n$ for $ n<0$.

1987 IMO Longlists, 17

Tags: algebra , logarithm
Consider the number $\alpha$ obtained by writing one after another the decimal representations of $1, 1987, 1987^2, \dots$ to the right the decimal point. Show that $\alpha$ is irrational.

2009 Indonesia TST, 1

2008 persons take part in a programming contest. In one round, the 2008 programmers are divided into two groups. Find the minimum number of groups such that every two programmers ever be in the same group.

2013 Online Math Open Problems, 14

In the universe of Pi Zone, points are labeled with $2 \times 2$ arrays of positive reals. One can teleport from point $M$ to point $M'$ if $M$ can be obtained from $M'$ by multiplying either a row or column by some positive real. For example, one can teleport from $\left( \begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right)$ to $\left( \begin{array}{cc} 1 & 20 \\ 3 & 40 \end{array} \right)$ and then to $\left( \begin{array}{cc} 1 & 20 \\ 6 & 80 \end{array} \right)$. A [i]tourist attraction[/i] is a point where each of the entries of the associated array is either $1$, $2$, $4$, $8$ or $16$. A company wishes to build a hotel on each of several points so that at least one hotel is accessible from every tourist attraction by teleporting, possibly multiple times. What is the minimum number of hotels necessary? [i]Proposed by Michael Kural[/i]

2009 Today's Calculation Of Integral, 400

(1) A function is defined $ f(x) \equal{} \ln (x \plus{} \sqrt {1 \plus{} x^2})$ for $ x\geq 0$. Find $ f'(x)$. (2) Find the arc length of the part $ 0\leq \theta \leq \pi$ for the curve defined by the polar equation: $ r \equal{} \theta\ (\theta \geq 0)$. Remark: [color=blue]You may not directly use the integral formula of[/color] $ \frac {1}{\sqrt {1 \plus{} x^2}},\ \sqrt{1 \plus{} x^2}$ here.

2009 Today's Calculation Of Integral, 482

Let $ n$ be natural number. Find the limit value of ${ \lim_{n\to\infty} \frac{1}{n}(\frac{1}{\sqrt{2}}+\frac{2}{\sqrt{5}}}+\cdots\cdots +\frac{n}{\sqrt{n^2+1}}).$

2010 Today's Calculation Of Integral, 581

For real numer $ c$ for which $ cx^2\geq \ln (1\plus{}x^2)$ for all real numbers $ x$, find the value of $ c$ such that the area of the figure bounded by two curves $ y\equal{}cx^2$ and $ y\equal{}\ln (1\plus{}x^2)$ and two lines $ x\equal{}1,\ x\equal{}\minus{}1$ is 4.

2010 Today's Calculation Of Integral, 539

Evaluate $ \int_0^{\frac{\pi}{4}} \frac{\sin ^ 2 x}{\cos ^ 3 x}\ dx$.

1979 IMO Shortlist, 14

Tags: logarithm
Find all bases of logarithms in which a real positive number can be equal to its logarithm or prove that none exist.

2011 Harvard-MIT Mathematics Tournament, 3

Evaluate $\displaystyle \int_1^\infty \left(\frac{\ln x}{x}\right)^{2011} dx$.

1953 AMC 12/AHSME, 5

Tags: logarithm
If $ \log_6 x\equal{}2.5$, the value of $ x$ is: $ \textbf{(A)}\ 90 \qquad\textbf{(B)}\ 36 \qquad\textbf{(C)}\ 36\sqrt{6} \qquad\textbf{(D)}\ 0.5 \qquad\textbf{(E)}\ \text{none of these}$

2009 Today's Calculation Of Integral, 412

Let the definite integral $ I_n\equal{}\int_0^{\frac{\pi}{4}} \frac{dx}{(\cos x)^n}\ (n\equal{}0,\ \pm 1,\ \pm 2,\ \cdots )$. (1) Find $ I_0,\ I_{\minus{}1},\ I_2$. (2) Find $ I_1$. (3) Express $ I_{n\plus{}2}$ in terms of $ I_n$. (4) Find $ I_{\minus{}3},\ I_{\minus{}2},\ I_3$. (5) Evaluate the definite integrals $ \int_0^1 \sqrt{x^2\plus{}1}\ dx,\ \int_0^1 \frac{dx}{(x^2\plus{}1)^2}\ dx$ in using the avobe results. You are not allowed to use the formula of integral for $ \sqrt{x^2\plus{}1}$ directively here.

2005 Today's Calculation Of Integral, 4

Calculate the following indefinite integrals. [1] $\int \frac{x}{\sqrt{5-x}}dx$ [2] $\int \frac{\sin x \cos ^2 x}{1+\cos x}dx$ [3] $\int (\sin x+\cos x)^2dx$ [4] $\int \frac{x-\cos ^2 x}{x\cos^ 2 x}dx$ [5]$\int (\sin x+\sin 2x)^2 dx$

2006 Moldova National Olympiad, 10.5

Let $x_{1}$, $x_{2}$, $\ldots$, $x_{n}$ be $n$ real numbers in $\left(\frac{1}{4},\frac{2}{3}\right)$. Find the minimal value of the expression: \[ \log_{\frac 32x_{1}}\left(\frac{1}{2}-\frac{1}{36x_{2}^{2}}\right)+\log_{\frac 32x_{2}}\left(\frac{1}{2}-\frac{1}{36x_{3}^{2}}\right)+\cdots+ \log_{\frac 32x_{n}}\left(\frac{1}{2}-\frac{1}{36x_{1}^{2}}\right). \]

1988 AMC 12/AHSME, 26

Tags: logarithm
Suppose that $p$ and $q$ are positive numbers for which \[ \log_{9}(p) = \log_{12}(q) = \log_{16}(p+q) \] What is the value of $\frac{q}{p}$? $\textbf{(A)}\ \frac{4}{3}\qquad\textbf{(B)}\ \frac{1+\sqrt{3}}{2}\qquad\textbf{(C)}\ \frac{8}{5}\qquad\textbf{(D)}\ \frac{1+\sqrt{5}}{2}\qquad\textbf{(E)}\ \frac{16}{9} $

2003 China Team Selection Test, 1

Find all functions $f: \mathbb{Z}^+\to \mathbb{R}$, which satisfies $f(n+1)\geq f(n)$ for all $n\geq 1$ and $f(mn)=f(m)f(n)$ for all $(m,n)=1$.

2005 Today's Calculation Of Integral, 6

Calculate the following indefinite integrals. [1] $\int \sin x\cos ^ 3 x dx$ [2] $\int \frac{dx}{(1+\sqrt{x})\sqrt{x}}dx$ [3] $\int x^2 \sqrt{x^3+1}dx$ [4] $\int \frac{e^{2x}-3e^{x}}{e^x}dx$ [5] $\int (1-x^2)e^x dx$