This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 913

1992 Hungary-Israel Binational, 3

We examine the following two sequences: The Fibonacci sequence: $F_{0}= 0, F_{1}= 1, F_{n}= F_{n-1}+F_{n-2 }$ for $n \geq 2$; The Lucas sequence: $L_{0}= 2, L_{1}= 1, L_{n}= L_{n-1}+L_{n-2}$ for $n \geq 2$. It is known that for all $n \geq 0$ \[F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}},L_{n}=\alpha^{n}+\beta^{n},\] where $\alpha=\frac{1+\sqrt{5}}{2},\beta=\frac{1-\sqrt{5}}{2}$. These formulae can be used without proof. We call a nonnegative integer $r$-Fibonacci number if it is a sum of $r$ (not necessarily distinct) Fibonacci numbers. Show that there infinitely many positive integers that are not $r$-Fibonacci numbers for any $r, 1 \leq r\leq 5.$

2014 Indonesia MO Shortlist, G3

Let $ABCD$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $AB < CD$. Suppose that $AC$ and $BD$ meet at $E$ and $AD$ and $BC$ meet at $F$. Construct the parallelograms $AEDK$ and $BECL$. Prove that $EF$ passes through the midpoint of the segment $KL$.

Oliforum Contest II 2009, 5

Define the function $ g(\cdot): \mathbb{Z} \to \{0,1\}$ such that $ g(n) \equal{} 0$ if $ n < 0$, and $ g(n) \equal{} 1$ otherwise. Define the function $ f(\cdot): \mathbb{Z} \to \mathbb{Z}$ such that $ f(n) \equal{} n \minus{} 1024g(n \minus{} 1024)$ for all $ n \in \mathbb{Z}$. Define also the sequence of integers $ \{a_i\}_{i \in \mathbb{N}}$ such that $ a_0 \equal{} 1$ e $ a_{n \plus{} 1} \equal{} 2f(a_n) \plus{} \ell$, where $ \ell \equal{} 0$ if $ \displaystyle \prod_{i \equal{} 0}^n{\left(2f(a_n) \plus{} 1 \minus{} a_i\right)} \equal{} 0$, and $ \ell \equal{} 1$ otherwise. How many distinct elements are in the set $ S: \equal{} \{a_0,a_1,\ldots,a_{2009}\}$? [i](Paolo Leonetti)[/i]

2005 Harvard-MIT Mathematics Tournament, 2

A plane curve is parameterized by $x(t)=\displaystyle\int_{t}^{\infty} \dfrac {\cos u}{u} \, \mathrm{d}u $ and $ y(t) = \displaystyle\int_{t}^{\infty} \dfrac {\sin u}{u} \, \mathrm{d}u $ for $ 1 \le t \le 2 $. What is the length of the curve?

2010 Today's Calculation Of Integral, 575

For a function $ f(x)\equal{}\int_x^{\frac{\pi}{4}\minus{}x} \log_4 (1\plus{}\tan t)dt\ \left(0\leq x\leq \frac{\pi}{8}\right)$, answer the following questions. (1) Find $ f'(x)$. (2) Find the $ n$ th term of the sequence $ a_n$ such that $ a_1\equal{}f(0),\ a_{n\plus{}1}\equal{}f(a_n)\ (n\equal{}1,\ 2,\ 3,\ \cdots)$.

2002 AIME Problems, 3

It is given that $\log_{6}a+\log_{6}b+\log_{6}c=6,$ where $a,$ $b,$ and $c$ are positive integers that form an increasing geometric sequence and $b-a$ is the square of an integer. Find $a+b+c.$

2024 AMC 12/AHSME, 8

Tags: logarithm
What value of $x$ satisfies \[\frac{\log_2x\cdot\log_3x}{\log_2x+\log_3x}=2?\] $ \textbf{(A) }25\qquad \textbf{(B) }32\qquad \textbf{(C) }36\qquad \textbf{(D) }42\qquad \textbf{(E) }48\qquad $

PEN A Problems, 107

Find four positive integers, each not exceeding $70000$ and each having more than $100$ divisors.

2007 China Northern MO, 2

Let $ f$ be a function given by $ f(x) = \lg(x+1)-\frac{1}{2}\cdot\log_{3}x$. a) Solve the equation $ f(x) = 0$. b) Find the number of the subsets of the set \[ \{n | f(n^{2}-214n-1998) \geq 0,\ n \in\mathbb{Z}\}.\]

2025 AIME, 4

Tags: logarithm , product
The product \[\prod^{63}_{k=4} \frac{\log_k (5^{k^2 - 1})}{\log_{k + 1} (5^{k^2 - 4})} = \frac{\log_4 (5^{15})}{\log_5 (5^{12})} \cdot \frac{\log_5 (5^{24})}{\log_6 (5^{21})}\cdot \frac{\log_6 (5^{35})}{\log_7 (5^{32})} \cdots \frac{\log_{63} (5^{3968})}{\log_{64} (5^{3965})}\] is equal to $\tfrac mn,$ where $m$ and $n$ are relatively prime positive integers. Find $m + n.$

2001 India National Olympiad, 3

If $a,b,c$ are positive real numbers such that $abc= 1$, Prove that \[ a^{b+c} b^{c+a} c^{a+b} \leq 1 . \]

1991 Arnold's Trivium, 66

Solve the Dirichlet problem \[\Delta u=0\text{ for }x^2+y^2<1\] \[u=1\text{ for }x^2+y^2=1,\;y>0\] \[u=-1\text{ for }x^2+y^2=1,\;y<0\]

2009 District Olympiad, 3

Let $ A $ be the set of real solutions of the equation $ 3^x=x+2, $ and let be the set $ B $ of real solutions of the equation $ \log_3 (x+2) +\log_2 \left( 3^x-x \right) =3^x-1 . $ Prove the validity of the following subpoints: [b]a)[/b] $ A\subset B. $ [b]b)[/b] $ B\not\subset\mathbb{Q} \wedge B\not\subset \mathbb{R}\setminus\mathbb{Q} . $

2002 Moldova National Olympiad, 3

Let $ a,b> 0$ such that $ a\ne b$. Prove that: $ \sqrt {ab} < \dfrac{a \minus{} b}{\ln a \minus{} \ln b} < \dfrac{a \plus{} b}{2}$

2007 Princeton University Math Competition, 5

Tags: logarithm
Round to the nearest tenth: $\log_6 (6^2-6+1) + 3\log_6 (5) - \frac{1}{2}\log_6 (9)$.

1978 Putnam, A3

Find the value of $ k\ (0<k<5)$ such that $ \int_0^{\infty} \frac{x^k}{2\plus{}4x\plus{}3x^2\plus{}5x^3\plus{}3x^4\plus{}4x^5\plus{}2x^6}\ dx$ is minimal.

1998 USAMTS Problems, 1

Tags: logarithm
Determine the leftmost three digits of the number \[1^1+2^2+3^3+...+999^{999}+1000^{1000}.\]

2010 Today's Calculation Of Integral, 602

Prove the following inequality. \[\frac{e-1}{n+1}\leqq\int^e_1(\log x)^n dx\leqq\frac{(n+1)e+1}{(n+1)(n+2)}\ (n=1,2,\cdot\cdot\cdot) \] 1994 Kyoto University entrance exam/Science

1963 AMC 12/AHSME, 5

Tags: logarithm
If $x$ and $\log_{10} x$ are real numbers and $\log_{10} x<0$, then: $\textbf{(A)}\ x<0 \qquad \textbf{(B)}\ -1<x<1 \qquad \textbf{(C)}\ 0<x\le 1 $ $ \textbf{(D)}\ -1<x<0 \qquad \textbf{(E)}\ 0<x<1$

1999 AIME Problems, 13

Forty teams play a tournament in which every team plays every other team exactly once. No ties occur, and each team has a $50 \%$ chance of winning any game it plays. The probability that no two teams win the same number of games is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $\log_2 n.$

1959 AMC 12/AHSME, 11

Tags: logarithm
The logarithm of $.0625$ to the base $2$ is: $ \textbf{(A)}\ .025 \qquad\textbf{(B)}\ .25\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ -4\qquad\textbf{(E)}\ -2 $

Today's calculation of integrals, 896

Given sequences $a_n=\frac{1}{n}{\sqrt[n] {_{2n}P_n}},\ b_n=\frac{1}{n^2}{\sqrt[n] {_{4n}P_{2n}}}$ and $c_n=\sqrt[n]{\frac{_{8n}P_{4n}}{_{6n}P_{4n}}}$, find $\lim_{n\to\infty} a_n,\ \lim_{n\to\infty} b_n$and $\lim_{n\to\infty} c_n.$

Today's calculation of integrals, 883

Prove that for each positive integer $n$ \[\frac{4n^2+1}{4n^2-1}\int_0^{\pi} (e^{x}-e^{-x})\cos 2nx\ dx>\frac{e^{\pi}-e^{-\pi}-2}{4}\ln \frac{(2n+1)^2}{(2n-1)(n+3)}.\]

2013 AMC 12/AHSME, 21

Consider \[A = \log (2013 + \log (2012 + \log (2011 + \log (\cdots + \log (3 + \log 2) \cdots )))).\] Which of the following intervals contains $ A $? $ \textbf{(A)} \ (\log 2016, \log 2017) $ $ \textbf{(B)} \ (\log 2017, \log 2018) $ $ \textbf{(C)} \ (\log 2018, \log 2019) $ $ \textbf{(D)} \ (\log 2019, \log 2020) $ $ \textbf{(E)} \ (\log 2020, \log 2021) $

Today's calculation of integrals, 871

Define sequences $\{a_n\},\ \{b_n\}$ by \[a_n=\int_{-\frac {\pi}6}^{\frac{\pi}6} e^{n\sin \theta}d\theta,\ b_n=\int_{-\frac {\pi}6}^{\frac{\pi}6} e^{n\sin \theta}\cos \theta d\theta\ (n=1,\ 2,\ 3,\ \cdots).\] (1) Find $b_n$. (2) Prove that for each $n$, $b_n\leq a_n\leq \frac 2{\sqrt{3}}b_n.$ (3) Find $\lim_{n\to\infty} \frac 1{n}\ln (na_n).$