Found problems: 155
2015 JBMO Shortlist, NT1
What is the greatest number of integers that can be selected from a set of $2015$ consecutive numbers so that no sum of any two selected numbers is divisible by their difference?
1990 All Soviet Union Mathematical Olympiad, 517
What is the largest possible value of $|...| |a_1 - a_2| - a_3| - ... - a_{1990}|$, where $a_1, a_2, ... , a_{1990}$ is a permutation of $1, 2, 3, ... , 1990$?
2017 Czech-Polish-Slovak Match, 2
Each of the ${4n^2}$ unit squares of a ${2n \times 2n}$ board ${(n \ge 1) }$ has been colored blue or red. A set of four different unit squares of the board is called [i]pretty [/i]if these squares can be labeled ${A,B,C,D}$ in such a way that ${A}$ and ${B}$ lie in the same row, ${C}$ and ${D}$ lie in the same row, ${A}$ and ${C}$ lie in the same column, ${B}$ and ${D}$ lie in the same column, ${A}$ and ${D}$ are blue, and ${B}$ and ${C}$ are red. Determine the largest possible number of different [i]pretty [/i]sets on such a board.
(Poland)
1978 Vietnam National Olympiad, 5
A river has a right-angle bend. Except at the bend, its banks are parallel lines of distance $a$ apart. At the bend the river forms a square with the river flowing in across one side and out across an adjacent side. What is the longest boat of length $c$ and negligible width which can pass through the bend?
2000 Mexico National Olympiad, 4
Let $a$ and $b$ be positive integers not divisible by $5$. A sequence of integers is constructed as follows: the first term is $5$, and every consequent term is obtained by multiplying its precedent by $a$ and adding $b$. (For example, if $a = 2$ and $b = 4$, the first three terms are $5,14,32$.) What is the maximum possible number of primes that can occur before encoutering the first composite term?
1955 Moscow Mathematical Olympiad, 318
What greatest number of triples of points can be selected from $1955$ given points, so that each two triples have one common point?
2015 Balkan MO Shortlist, N5
For a positive integer $s$, denote with $v_2(s)$ the maximum power of $2$ that divides $s$.
Prove that for any positive integer $m$ that: $$v_2\left(\prod_{n=1}^{2^m}\binom{2n}{n}\right)=m2^{m-1}+1.$$
(FYROM)
2019 Dutch IMO TST, 3
Let $n$ be a positive integer. Determine the maximum value of $gcd(a, b) + gcd(b, c) + gcd(c, a)$ for positive integers $a, b, c$ such that $a + b + c = 5n$.
1951 Moscow Mathematical Olympiad, 194
One side of a convex polygon is equal to $a$, the sum of exterior angles at the vertices not adjacent to this side are equal to $120^o$. Among such polygons, find the polygon of the largest area.
1999 Greece Junior Math Olympiad, 2
Let $n$ be a fixed positive integer and let $x, y$ be positive integers such that $xy = nx+ny$.
Determine the minimum and the maximum of $x$ in terms of $n$.
2021 Junior Balkаn Mathematical Olympiad, 2
For any set $A = \{x_1, x_2, x_3, x_4, x_5\}$ of five distinct positive integers denote by $S_A$ the sum of its elements, and denote by $T_A$ the number of triples $(i, j, k)$ with $1 \le i < j < k \le 5$ for which $x_i + x_j + x_k$ divides $S_A$.
Find the largest possible value of $T_A$.
2010 BAMO, 1
We write $\{a,b,c\}$ for the set of three different positive integers $a, b$, and $c$. By choosing some or all of the numbers a, b and c, we can form seven nonempty subsets of $\{a,b,c\}$. We can then calculate the sum of the elements of each subset. For example, for the set $\{4,7,42\}$ we will find sums of $4, 7, 42,11, 46, 49$, and $53$ for its seven subsets. Since $7, 11$, and $53$ are prime, the set $\{4,7,42\}$ has exactly three subsets whose sums are prime. (Recall that prime numbers are numbers with exactly two different factors, $1$ and themselves. In particular, the number $1$ is not prime.)
What is the largest possible number of subsets with prime sums that a set of three different positive integers can have? Give an example of a set $\{a,b,c\}$ that has that number of subsets with prime sums, and explain why no other three-element set could have more.
2013 Israel National Olympiad, 2
Let $A=\{n\in\mathbb{Z}\mid 0<n<2013\}$. A subset $B\subseteq A$ is called [b]reduced[/b] if for any two numbers $x,y\in B$, we must have $x\cdot y \notin B$. For example, any subset containing the numbers $3,5,15$ cannot be reduced, and same for a subset containing $4,16$.
[list=a]
[*] Find the maximal size of a reduced subset of $A$.
[*] How many reduced subsets are there with that maximal size?
[/list]
2021 JBMO Shortlist, N2
The real numbers $x, y$ and $z$ are such that $x^2 + y^2 + z^2 = 1$.
a) Determine the smallest and the largest possible values of $xy + yz - xz$.
b) Prove that there does not exist a triple $(x, y, z)$ of rational numbers, which attains any of the two values in a).
2018 Bosnia and Herzegovina Team Selection Test, 4
Every square of $1000 \times 1000$ board is colored black or white. It is known that exists one square $10 \times 10$ such that all squares inside it are black and one square $10 \times 10$ such that all squares inside are white. For every square $K$ $10 \times 10$ we define its power $m(K)$ as an absolute value of difference between number of white and black squares $1 \times 1$ in square $K$. Let $T$ be a square $10 \times 10$ which has minimum power among all squares $10 \times 10$ in this board. Determine maximal possible value of $m(T)$
1987 Brazil National Olympiad, 3
Two players play alternately. The first player is given a pair of positive integers $(x_1, y_1)$. Each player must replace the pair $(x_n, y_n)$ that he is given by a pair of non-negative integers $(x_{n+1}, y_{n+1})$ such that $x_{n+1} = min(x_n, y_n)$ and $y_{n+1} = max(x_n, y_n)- k\cdot x_{n+1}$ for some positive integer $k$. The first player to pass on a pair with $y_{n+1} = 0$ wins. Find for which values of $x_1/y_1$ the first player has a winning strategy.
2013 BAMO, 4
Consider a rectangular array of single digits $d_{i,j}$ with 10 rows and 7 columns, such that $d_{i+1,j}-d_{i,j}$ is always 1 or -9 for all $1 \leq i \leq 9$ and all $1 \leq j \leq 7$, as in the example below. For $1 \leq i \leq 10$, let $m_i$ be the median of $d_{i,1}$, ..., $d_{i,7}$. Determine the least and greatest possible values of the mean of $m_1$, $m_2$, ..., $m_{10}$.
Example:
[img]https://cdn.artofproblemsolving.com/attachments/8/a/b77c0c3aeef14f0f48d02dde830f979eca1afb.png[/img]
2014 India PRMO, 1
A natural number $k$ is such that $k^2 < 2014 < (k +1)^2$. What is the largest prime factor of $k$?
1985 Polish MO Finals, 1
Find the largest $k$ such that for every positive integer $n$ we can find at least $k$ numbers in the set $\{n+1, n+2, ... , n+16\}$ which are coprime with $n(n+17)$.
2017 Bosnia and Herzegovina Junior BMO TST, 4
In each cell of $5 \times 5$ table there is one number from $1$ to $5$ such that every number occurs exactly once in every row and in every column. Number in one column is [i]good positioned[/i] if following holds:
- In every row, every number which is left from [i]good positoned[/i] number is smaller than him, and every number which is right to him is greater than him, or vice versa.
- In every column, every number which is above from [i]good positoned[/i] number is smaller than him, and every number which is below to him is greater than him, or vice versa.
What is maximal number of good positioned numbers that can occur in this table?
1991 All Soviet Union Mathematical Olympiad, 557
The real numbers $x_1, x_2, ... , x_{1991}$ satisfy $$|x_1 - x_2| + |x_2 - x_3| + ... + |x_{1990} - x_{1991}| = 1991$$ What is the maximum possible value of $$|s_1 - s_2| + |s_2 - s_3| + ... + |s_{1990} - s_{1991}|$$ where $$s_n = \frac{x_1 + x_2 + ... + x_n}{n}?$$
2002 Mexico National Olympiad, 5
A [i]trio [/i] is a set of three distinct integers such that two of the numbers are divisors or multiples of the third. Which [i]trio [/i] contained in $\{1, 2, ... , 2002\}$ has the largest possible sum? Find all [i]trios [/i] with the maximum sum.
2017 India PRMO, 15
Integers $1, 2, 3, ... ,n$, where $n > 2$, are written on a board. Two numbers $m, k$ such that $1 < m < n, 1 < k < n$ are removed and the average of the remaining numbers is found to be $17$. What is the maximum sum of the two removed numbers?
2002 Nordic, 2
In two bowls there are in total ${N}$ balls, numbered from ${1}$ to ${N}$. One ball is moved from one of the bowls into the other. The average of the numbers in the bowls is increased in both of the bowls by the same amount, ${x}$. Determine the largest possible value of ${x}$.
2021 Balkan MO Shortlist, C2
Let $K$ and $N > K$ be fixed positive integers. Let $n$ be a positive integer and let $a_1, a_2, ..., a_n$ be distinct integers. Suppose that whenever $m_1, m_2, ..., m_n$ are integers, not all equal to $0$, such that $\mid{m_i}\mid \le K$ for each $i$, then the sum
$$\sum_{i = 1}^{n} m_ia_i$$
is not divisible by $N$. What is the largest possible value of $n$?
[i]Proposed by Ilija Jovcevski, North Macedonia[/i]