This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 56

1975 Putnam, A3

Let $0<\alpha<\beta <\gamma\in \mathbb{R}$. Let $K=\{(x,y,z)\in \mathbb{R}^{3}\;|\; x,y,z\geq 0\; \text{and}\; x^{\beta}+y^{\beta}+z^{\beta}=1\}$. Define $f:K\rightarrow \mathbb{R},\; (x,y,z)\mapsto x^{\alpha}+y^{\beta}+z^{\gamma}$. At what points of $K$ does $f$ assume its minimal and maximal values?

2017 Pan-African Shortlist, I4

Find the maximum and minimum of the expression \[ \max(a_1, a_2) + \max(a_2, a_3), + \dots + \max(a_{n-1}, a_n) + \max(a_n, a_1), \] where $(a_1, a_2, \dots, a_n)$ runs over the set of permutations of $(1, 2, \dots, n)$.

2019 Estonia Team Selection Test, 12

Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.

2018 Balkan MO Shortlist, G3

Let $P$ be an interior point of triangle $ABC$. Let $a,b,c$ be the sidelengths of triangle $ABC$ and let $p$ be it's semiperimeter. Find the maximum possible value of $$ \min\left(\frac{PA}{p-a},\frac{PB}{p-b},\frac{PC}{p-c}\right)$$ taking into consideration all possible choices of triangle $ABC$ and of point $P$. by Elton Bojaxhiu, Albania

1995 IMO, 4

Find the maximum value of $ x_{0}$ for which there exists a sequence $ x_{0},x_{1}\cdots ,x_{1995}$ of positive reals with $ x_{0} \equal{} x_{1995}$, such that \[ x_{i \minus{} 1} \plus{} \frac {2}{x_{i \minus{} 1}} \equal{} 2x_{i} \plus{} \frac {1}{x_{i}}, \] for all $ i \equal{} 1,\cdots ,1995$.

2015 Dutch IMO TST, 4

Each of the numbers $1$ up to and including $2014$ has to be coloured; half of them have to be coloured red the other half blue. Then you consider the number $k$ of positive integers that are expressible as the sum of a red and a blue number. Determine the maximum value of $k$ that can be obtained.

2012 Balkan MO Shortlist, A4

Let $ABCD$ be a square of the plane $P$. Define the minimum and the maximum the value of the function $f: P \to R$ is given by $f (P) =\frac{PA + PB}{PC + PD}$

1998 Czech and Slovak Match, 5

In a triangle $ABC$, $T$ is the centroid and $ \angle TAB = \angle ACT$. Find the maximum possible value of $sin \angle CAT +sin \angle CBT$.

Russian TST 2019, P2

Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.

2016 Czech And Slovak Olympiad III A, 4

For positive numbers $a, b, c$ holds $(a + c) (b^2 + a c) = 4a$. Determine the maximum value of $b + c$ and find all triplets of numbers $(a, b, c)$ for which expression takes this value

1995 IMO Shortlist, 2

Find the maximum value of $ x_{0}$ for which there exists a sequence $ x_{0},x_{1}\cdots ,x_{1995}$ of positive reals with $ x_{0} \equal{} x_{1995}$, such that \[ x_{i \minus{} 1} \plus{} \frac {2}{x_{i \minus{} 1}} \equal{} 2x_{i} \plus{} \frac {1}{x_{i}}, \] for all $ i \equal{} 1,\cdots ,1995$.

2018 China Girls Math Olympiad, 5

Let $\omega \in \mathbb{C}$, and $\left | \omega \right | = 1$. Find the maximum length of $z = \left( \omega + 2 \right) ^3 \left( \omega - 3 \right)^2$.

1991 IMO Shortlist, 27

Determine the maximum value of the sum \[ \sum_{i < j} x_ix_j (x_i \plus{} x_j) \] over all $ n \minus{}$tuples $ (x_1, \ldots, x_n),$ satisfying $ x_i \geq 0$ and $ \sum^n_{i \equal{} 1} x_i \equal{} 1.$

2015 Czech-Polish-Slovak Match, 3

Real numbers $x,y,z$ satisfy $$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+x+y+z=0$$ and none of them lies in the open interval $(-1,1)$. Find the maximum value of $x+y+z$. [i]Proposed by Jaromír Šimša[/i]

2019 Greece Team Selection Test, 1

Given an equilateral triangle with sidelength $k$ cm. With lines parallel to it's sides, we split it into $k^2$ small equilateral triangles with sidelength $1$ cm. This way, a triangular grid is created. In every small triangle of sidelength $1$ cm, we place exactly one integer from $1$ to $k^2$ (included), such that there are no such triangles having the same numbers. With vertices the points of the grid, regular hexagons are defined of sidelengths $1$ cm. We shall name as [i]value [/i] of the hexagon, the sum of the numbers that lie on the $6$ small equilateral triangles that the hexagon consists of . Find (in terms of the integer $k>4$) the maximum and the minimum value of the sum of the values of all hexagons .

2021 Turkey Junior National Olympiad, 3

Let $x, y, z$ be real numbers such that $$x+y+z=2, \;\;\;\; xy+yz+zx=1$$ Find the maximum possible value of $x-y$.

2018 Iran Team Selection Test, 2

Find the maximum possible value of $k$ for which there exist distinct reals $x_1,x_2,\ldots ,x_k $ greater than $1$ such that for all $1 \leq i, j \leq k$, $$x_i^{\lfloor x_j \rfloor }= x_j^{\lfloor x_i\rfloor}.$$ [i]Proposed by Morteza Saghafian[/i]

2019 Taiwan TST Round 1, 5

Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.

2019 Azerbaijan IMO TST, 3

Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.

2019 Greece Team Selection Test, 1

Given an equilateral triangle with sidelength $k$ cm. With lines parallel to it's sides, we split it into $k^2$ small equilateral triangles with sidelength $1$ cm. This way, a triangular grid is created. In every small triangle of sidelength $1$ cm, we place exactly one integer from $1$ to $k^2$ (included), such that there are no such triangles having the same numbers. With vertices the points of the grid, regular hexagons are defined of sidelengths $1$ cm. We shall name as [i]value [/i] of the hexagon, the sum of the numbers that lie on the $6$ small equilateral triangles that the hexagon consists of . Find (in terms of the integer $k>4$) the maximum and the minimum value of the sum of the values of all hexagons .

2020 China National Olympiad, 1

Let $a_1,a_2,\cdots,a_{41}\in\mathbb{R},$ such that $a_{41}=a_1, \sum_{i=1}^{40}a_i=0,$ and for any $i=1,2,\cdots,40, |a_i-a_{i+1}|\leq 1.$ Determine the greatest possible value of $(1)a_{10}+a_{20}+a_{30}+a_{40};$ $(2)a_{10}\cdot a_{20}+a_{30}\cdot a_{40}.$

2015 Dutch IMO TST, 4

Each of the numbers $1$ up to and including $2014$ has to be coloured; half of them have to be coloured red the other half blue. Then you consider the number $k$ of positive integers that are expressible as the sum of a red and a blue number. Determine the maximum value of $k$ that can be obtained.

2018 Rioplatense Mathematical Olympiad, Level 3, 6

A company has $n$ employees. It is known that each of the employees works at least one of the $7$ days of the week, with the exception of an employee who does not work any of the $7$ days. Furthermore, for any two of these $n$ employees, there are at least $3$ days of the week in which one of the two works that day and the other does not (it is not necessarily the same employee who works those days). Determine the highest possible value of $n$.

2003 Junior Balkan Team Selection Tests - Romania, 4

Two unit squares with parallel sides overlap by a rectangle of area $1/8$. Find the extreme values of the distance between the centers of the squares.

2018 Mexico National Olympiad, 4

Let $n\geq 2$ be an integer. For each $k$-tuple of positive integers $a_1, a_2, \ldots, a_k$ such that $a_1+a_2+\cdots +a_k=n$, consider the sums $S_i=1+2+\ldots +a_i$ for $1\leq i\leq k$. Determine, in terms of $n$, the maximum possible value of the product $S_1S_2\cdots S_k$. [i]Proposed by Misael Pelayo[/i]