This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2003 France Team Selection Test, 3

Let $p_1,p_2,\ldots,p_n$ be distinct primes greater than $3$. Show that $2^{p_1p_2\cdots p_n}+1$ has at least $4^n$ divisors.

2022 Estonia Team Selection Test, 3

Determine all tuples of integers $(a,b,c)$ such that: $$(a-b)^3(a+b)^2 = c^2 + 2(a-b) + 1$$

2014 China Team Selection Test, 3

Show that there are no 2-tuples $ (x,y)$ of positive integers satisfying the equation $ (x+1) (x+2)\cdots (x+2014)= (y+1) (y+2)\cdots (y+4028).$

2024 Iran Team Selection Test, 9

Prove that for any natural numbers $a , b , c$ that $b>a>1$ and $gcd(c,ab)=1$ , there exist a natural number $n$ such that : $$c | \binom{b^n}{a^n}$$ [i]Proposed by Navid Safaei[/i]

2012 Online Math Open Problems, 4

Let $\text{lcm} (a,b)$ denote the least common multiple of $a$ and $b$. Find the sum of all positive integers $x$ such that $x\le 100$ and $\text{lcm}(16,x) = 16x$. [i]Ray Li.[/i]

1998 Baltic Way, 2

A triple $(a,b,c)$ of positive integers is called [i]quasi-Pythagorean[/i] if there exists a triangle with lengths of the sides $a,b,c$ and the angle opposite to the side $c$ equal to $120^{\circ}$. Prove that if $(a,b,c)$ is a quasi-Pythagorean triple then $c$ has a prime divisor bigger than $5$.

1993 French Mathematical Olympiad, Problem 1

Assume we are given a set of weights, $x_1$ of which have mass $d_1$, $x_2$ have mass $d_2$, etc, $x_k$ have mass $d_k$, where $x_i,d_i$ are positive integers and $1\le d_1<d_2<\ldots<d_k$. Let us denote their total sum by $n=x_1d_1+\ldots+x_kd_k$. We call such a set of weights [i]perfect[/i] if each mass $0,1,\ldots,n$ can be uniquely obtained using these weights. (a) Write down all sets of weights of total mass $5$. Which of them are perfect? (b) Show that a perfect set of weights satisfies $$(1+x_1)(1+x_2)\cdots(1+x_k)=n+1.$$ (c) Conversely, if $(1+x_1)(1+x_2)\cdots(1+x_k)=n+1$, prove that one can uniquely choose the corresponding masses $d_1,d_2,\ldots,d_k$ with $1\le d_1<\ldots<d_k$ in order for the obtained set of weights is perfect. (d) Determine all perfect sets of weights of total mass $1993$.

2012 Online Math Open Problems, 47

Let $ABCD$ be an isosceles trapezoid with bases $AB=5$ and $CD=7$ and legs $BC=AD=2 \sqrt{10}.$ A circle $\omega$ with center $O$ passes through $A,B,C,$ and $D.$ Let $M$ be the midpoint of segment $CD,$ and ray $AM$ meet $\omega$ again at $E.$ Let $N$ be the midpoint of $BE$ and $P$ be the intersection of $BE$ with $CD.$ Let $Q$ be the intersection of ray $ON$ with ray $DC.$ There is a point $R$ on the circumcircle of $PNQ$ such that $\angle PRC = 45^\circ.$ The length of $DR$ can be expressed in the form $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. What is $m+n$? [i]Author: Ray Li[/i]

Russian TST 2021, P3

Let $\mathcal{S}$ be a set consisting of $n \ge 3$ positive integers, none of which is a sum of two other distinct members of $\mathcal{S}$. Prove that the elements of $\mathcal{S}$ may be ordered as $a_1, a_2, \dots, a_n$ so that $a_i$ does not divide $a_{i - 1} + a_{i + 1}$ for all $i = 2, 3, \dots, n - 1$.

2011 Argentina National Olympiad Level 2, 2

There are two [i]allowed operations[/i] on a pair $(a, b)$ of positive integers: [list=i] [*]Add $1$ to both $a$ and $b$. [*]If one of the numbers $a$ or $b$ is a perfect cube, replace it with its cube root. [/list] The goal is to make the two numbers equal. Find all initial pairs $(a, b)$ for which this is possible.

1947 Kurschak Competition, 1

Prove that $46^{2n+1} + 296 \cdot 13^{2n+1}$ is divisible by $1947$.

2019 Purple Comet Problems, 19

Find the remainder when $\prod_{n=3}^{33}2n^4 - 25n^3 + 33n^2$ is divided by $2019$.

1989 Bundeswettbewerb Mathematik, 1

For a given positive integer $n$, let $f(x) =x^{n}$. Is it possible for the decimal number $$0.f(1)f(2)f(3)\ldots$$ to be rational? (Example: for $n=2$, we are considering $0.1491625\ldots$)

DMM Individual Rounds, 1998 Tie

[b]p1A[/b] Positive reals $x$, $y$, and $z$ are such that $x/y +y/x = 7$ and $y/z +z/y = 7$. There are two possible values for $z/x + x/z;$ find the greater value. [b]p1B[/b] Real values $x$ and $y$ are such that $x+y = 2$ and $x^3+y^3 = 3$. Find $x^2+y^2$. [b]p2[/b] Set $A = \{5, 6, 8, 13, 20, 22, 33, 42\}$. Let $\sum S$ denote the sum of the members of $S$; then $\sum A = 149$. Find the number of (not necessarily proper) subsets $B$ of $A$ for which $\sum B \ge 75$. [b]p3[/b] $99$ dots are evenly spaced around a circle. Call two of these dots ”close” if they have $0$, $1$, or $2$ dots between them on the circle. We wish to color all $99$ dots so that any two dots which are close are colored differently. How many such colorings are possible using no more than $4$ different colors? [b]p4[/b] Given a $9 \times 9$ grid of points, count the number of nondegenerate squares that can be drawn whose vertices are in the grid and whose center is the middle point of the grid. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2011 Greece Junior Math Olympiad, 2

We consider the set of four-digit positive integers $x =\overline{abcd}$ with digits different than zero and pairwise different. We also consider the integers $y = \overline{dcba}$ and we suppose that $x > y$. Find the greatest and the lowest value of the difference $x-y$, as well as the corresponding four-digit integers $x,y$ for which these values are obtained.

1974 Putnam, A3

A well-known theorem asserts that a prime $p > 2$ can be written as the sum of two perfect squares ($p = m^2 +n^2$ , with $m$ and $n$ integers) if and only if $p \equiv 1$ (mod $4$). Assuming this result, find which primes $p > 2$ can be written in each of the following forms, using integers $x$ and $y$: a) $x^2 +16y^2, $ b) $4x^2 +4xy+ 5y^2.$

2006 Irish Math Olympiad, 4

Let $n$ be a positive integer. Find the greatest common divisor of the numbers $\binom{2n}{1},\binom{2n}{3},\binom{2n}{5},...,\binom{2n}{2n-1}$.

2016 Indonesia MO, 8

Determine with proof, the number of permutations $a_1,a_2,a_3,...,a_{2016}$ of $1,2,3,...,2016$ such that the value of $|a_i-i|$ is fixed for all $i=1,2,3,...,2016$, and its value is an integer multiple of $3$.

2024 Korea Summer Program Practice Test, 3

Define the sequence $\{a_n\}_{n=1}^\infty$ as \[ a_1 = a_2 = 1,\quad a_{n+2} = 14a_{n+1} - a_n \; (n \geq 1) \] Prove that if $p$ is prime and there exists a positive integer $n$ such that $\frac{a_n}p$ is an integer, then $\frac{p-1}{12}$ is also an integer.

2021 CMIMC, 8

Determine the number of functions $f$ from the integers to $\{1,2,\cdots,15\}$ which satisfy $$f(x)=f(x+15)$$ and $$f(x+f(y))=f(x-f(y))$$ for all $x,y$. [i]Proposed by Vijay Srinivasan[/i]

2014 IMAC Arhimede, 3

a) Prove that the equation $2^x + 21^x = y^3$ has no solution in the set of natural numbers. b) Solve the equation $2^x + 21^y = z^2y$ in the set of non-negative integer numbers.

2007 ITest, 36

Let $b$ be a real number randomly sepected from the interval $[-17,17]$. Then, $m$ and $n$ are two relatively prime positive integers such that $m/n$ is the probability that the equation \[x^4+25b^2=(4b^2-10b)x^2\] has $\textit{at least}$ two distinct real solutions. Find the value of $m+n$.

MMPC Part II 1996 - 2019, 2014

[b]p1.[/b] If $P$ is a (convex) polygon, a triangulation of $P$ is a set of line segments joining pairs of corners of $P$ in such a way that $P$ is divided into non-overlapping triangles, each of which has its corners at corners of $P$. For example, the following are different triangulations of a square. (a) Prove that if $P$ is an $n$-gon with $n > 3$, then every triangulation of $P$ produces at least two triangles $T_1$, $T_2$ such that two of the sides of $T_i$, $i = 1$ or $2$ are also sides of $P$. (b) Find the number of different possible triangulations of a regular hexagon. [img]https://cdn.artofproblemsolving.com/attachments/9/d/0f760b0869fafc882f293846c05d182109fb78.png[/img] [b]p2.[/b] There are $n$ students, $n \ge 2$, and $n + 1$ cubical cakes of volume $1$. They have the use of a knife. In order to divide the cakes equitably they make cuts with the knife. Each cut divides a cake (or a piece of a cake) into two pieces. (a) Show that it is possible to provide each student with a volume $(n + 1)/n$ of a cake while making no more than $n - 1$ cuts. (b) Show that for each integer $k$ with $2 \le k \le n$ it is possible to make $n - 1$ cuts in such a way that exactly $k$ of the $n$ students receive an entire (uncut) cake in their portion. [b]p3. [/b]The vertical lines at $x = 0$, $x = \frac12$ , $x = 1$, $x = \frac32$ ,$...$ and the horizontal lines at $y = 0$, $y = \frac12$ , $y = 1$, $y = \frac32$ ,$ ...$ subdivide the first quadrant of the plane into $\frac12 \times \frac12$ square regions. Color these regions in a checkerboard fashion starting with a black region near the origin and alternating black and white both horizontally and vertically. (a) Let $T$ be a rectangle in the first quadrant with sides parallel to the axes. If the width of $T$ is an integer, prove that $T$ has equal areas of black and white. Note that a similar argument works to show that if the height of $T$ is an integer, then $T$ has equal areas of black and white. (b) Let $R$ be a rectangle with vertices at $(0, 0)$, $(a, 0)$, $(a, b)$, and $(0, b)$ with $a$ and $b$ positive. If $R$ has equal areas of black and white, prove that either $a$ is an integer or that $b$ is an integer. (c) Suppose a rectangle $R$ is tiled by a finite number of rectangular tiles. That is, the rectangular tiles completely cover $R$ but intersect only along their edges. If each of the tiles has at least one integer side, prove that $R$ has at least one integer side. [b]p4.[/b] Call a number [i]simple [/i] if it can be expressed as a product of single-digit numbers (in base ten). (a) Find two simple numbers whose sum is $2014$ or prove that no such numbers exist. (b) Find a simple number whose last two digits are $37$ or prove that no such number exists. [b]p5.[/b] Consider triangles for which the angles $\alpha$, $\beta$, and $\gamma$ form an arithmetic progression. Let $a, b, c$ denote the lengths of the sides opposite $\alpha$, $\beta$, $\gamma$ , respectively. Show that for all such triangles, $$\frac{a}{c}\sin 2\gamma +\frac{c}{a} \sin 2\alpha$$ has the same value, and determine an algebraic expression for this value. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1995 AIME Problems, 10

What is the largest positive integer that is not the sum of a positive integral multiple of 42 and a positive composite integer?

EMCC Speed Rounds, 2018

[i]20 problems for 25 minutes.[/i] [b]p1.[/b] What is $2018 - 3018 + 4018$? [b]p2.[/b] What is the smallest integer greater than $100$ that is a multiple of both $6$ and $8$? [b]p3.[/b] What positive real number can be expressed as both $\frac{b}{a}$ and $a:b$ in base $10$ for nonzero digits $a$ and $b$? Express your answer as a decimal. [b]p4.[/b] A non-degenerate triangle has sides of lengths $1$, $2$, and $\sqrt{n}$, where $n$ is a positive integer. How many possible values of $n$ are there? [b]p5.[/b] When three integers are added in pairs, and the results are $20$, $18$, and $x$. If all three integers sum to $31$, what is $x$? [b]p6.[/b] A cube's volume in cubic inches is numerically equal to the sum of the lengths of all its edges, in inches. Find the surface area of the cube, in square inches. [b]p7.[/b] A $12$ hour digital clock currently displays$ 9 : 30$. Ignoring the colon, how many times in the next hour will the clock display a palindrome (a number that reads the same forwards and backwards)? [b]p8.[/b] SeaBay, an online grocery store, offers two different types of egg cartons. Small egg cartons contain $12$ eggs and cost $3$ dollars, and large egg cartons contain $18$ eggs and cost $4$ dollars. What is the maximum number of eggs that Farmer James can buy with $10$ dollars? [b]p9.[/b] What is the sum of the $3$ leftmost digits of $\underbrace{999...9}_{2018\,\,\ 9' \,\,s}\times 12$? [b]p10.[/b] Farmer James trisects the edges of a regular tetrahedron. Then, for each of the four vertices, he slices through the plane containing the three trisection points nearest to the vertex. Thus, Farmer James cuts off four smaller tetrahedra, which he throws away. How many edges does the remaining shape have? [b]p11.[/b] Farmer James is ordering takeout from Kristy's Krispy Chicken. The base cost for the dinner is $\$14.40$, the sales tax is $6.25\%$, and delivery costs $\$3.00$ (applied after tax). How much did Farmer James pay, in dollars? [b]p12.[/b] Quadrilateral $ABCD$ has $ \angle ABC = \angle BCD = \angle BDA = 90^o$. Given that $BC = 12$ and $CD = 9$, what is the area of $ABCD$? [b]p13.[/b] Farmer James has $6$ cards with the numbers $1-6$ written on them. He discards a card and makes a $5$ digit number from the rest. In how many ways can he do this so that the resulting number is divisible by $6$? [b]p14.[/b] Farmer James has a $5 \times 5$ grid of points. What is the smallest number of triangles that he may draw such that each of these $25$ points lies on the boundary of at least one triangle? [b]p15.[/b] How many ways are there to label these $15$ squares from $1$ to $15$ such that squares $1$ and $2$ are adjacent, squares $2$ and $3$ are adjacent, and so on? [img]https://cdn.artofproblemsolving.com/attachments/e/a/06dee288223a16fbc915f8b95c9e4f2e4e1c1f.png[/img] [b]p16.[/b] On Farmer James's farm, there are three henhouses located at $(4, 8)$, $(-8,-4)$, $(8,-8)$. Farmer James wants to place a feeding station within the triangle formed by these three henhouses. However, if the feeding station is too close to any one henhouse, the hens in the other henhouses will complain, so Farmer James decides the feeding station cannot be within 6 units of any of the henhouses. What is the area of the region where he could possibly place the feeding station? [b]p17.[/b] At Eggs-Eater Academy, every student attends at least one of $3$ clubs. $8$ students attend frying club, $12$ students attend scrambling club, and $20$ students attend poaching club. Additionally, $10$ students attend at least two clubs, and $3$ students attend all three clubs. How many students are there in total at Eggs-Eater Academy? [b]p18.[/b] Let $x, y, z$ be real numbers such that $8^x = 9$, $27^y = 25$, and $125^z = 128$. What is the value of $xyz$? [b]p19.[/b] Let $p$ be a prime number and $x, y$ be positive integers. Given that $9xy = p(p + 3x + 6y)$, find the maximum possible value of $p^2 + x^2 + y^2$. [b]p20.[/b] Farmer James's hens like to drop eggs. Hen Hao drops $6$ eggs uniformly at random in a unit square. Farmer James then draws the smallest possible rectangle (by area), with sides parallel to the sides of the square, that contain all $6$ eggs. What is the probability that at least one of the $6$ eggs is a vertex of this rectangle? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].