This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2016 Latvia National Olympiad, 1

Given that $x$, $y$ and $z$ are positive integers such that $x^3y^5z^6$ is a perfect 7th power of a positive integer, show that also $x^5y^6z^3$ is a perfect 7th power.

2010 Postal Coaching, 5

Find the first integer $n > 1$ such that the average of $1^2 , 2^2 ,\cdots, n^2$ is itself a perfect square.

2012 HMNT, 1

What is the sum of all of the distinct prime factors of $25^3 - 27^2$?

2005 Alexandru Myller, 1

[b]1)[/b] Prove that there are finite sequences, of any length, of nonegative integers having the property that the arithmetic mean of any choice of its elements is natural. [b]2)[/b] Study if there is an increasing infinite sequence of nonegative integers having the property that the arithmetic mean of any finite choice of its elements is natural.

2010 IberoAmerican Olympiad For University Students, 3

A student adds up rational fractions incorrectly: \[\frac{a}{b}+\frac{x}{y}=\frac{a+x}{b+y}\quad (\star) \] Despite that, he sometimes obtains correct results. For a given fraction $\frac{a}{b},a,b\in\mathbb{Z},b>0$, find all fractions $\frac{x}{y},x,y\in\mathbb{Z},y>0$ such that the result obtained by $(\star)$ is correct.

2024 Australian Mathematical Olympiad, P5

The sequence of positive integers $a_1, a_2, \ldots, a_{2025}$ is defined as follows: $a_1=2^{2024}+1$ and $a_{n+1}$ is the greatest prime factor of $a_n^2-1$ for $1 \leq n \leq 2024$. Find the value of $a_{2024}+a_{2025}$.

2016 IFYM, Sozopol, 7

Is the following set of prime numbers $p$ finite or infinite, where each $p$ [b]doesn't[/b] divide the numbers that can be expressed as $n^{2016}+2016^{2016}$ for $n\in \mathbb{N}$, if: a) $p=4k+3$; b) $p=4k+1$?

Brazil L2 Finals (OBM) - geometry, 2015.3

Let $ABC$ be a triangle and $n$ a positive integer. Consider on the side $BC$ the points $A_1, A_2, ..., A_{2^n-1}$ that divide the side into $2^n$ equal parts, that is, $BA_1=A_1A_2=...=A_{2^n-2}A_{2^n-1}=A_{2^n-1}C$. Set the points $B_1, B_2, ..., B_{2^n-1}$ and $C_1, C_2, ..., C_{2^n-1}$ on the sides $CA$ and $AB$, respectively, analogously. Draw the line segments $AA_1, AA_2, ..., AA_{2^n-1}$, $BB_1, BB_2, ..., BB_{2^n-1}$ and $CC_1, CC_2, ..., CC_{2^n-1}$. Find, in terms of $n$, the number of regions into which the triangle is divided.

2003 Polish MO Finals, 6

Let $n$ be an even positive integer. Show that there exists a permutation $(x_1, x_2, \ldots, x_n)$ of the set $\{1, 2, \ldots, n\}$, such that for each $i \in \{1, 2, \ldots, n\}, x_{i+1}$ is one of the numbers $2x_i, 2x_{i}-1, 2x_i - n, 2x_i - n - 1$, where $x_{n+1} = x_1.$

1983 Austrian-Polish Competition, 4

The set $N$ has been partitioned into two sets A and $B$. Show that for every $n \in N$ there exist distinct integers $a, b > n$ such that $a, b, a + b$ either all belong to $A$ or all belong to $B$.

2011 Math Hour Olympiad, 6-7

[u]Round 1[/u] [b]p1.[/b] In a chemical lab there are three vials: one that can hold $1$ oz of fluid, another that can hold $2$ oz, and a third that can hold $3$ oz. The first is filled with grape juice, the second with sulfuric acid, and the third with water. There are also $3$ empty vials in the cupboard, also of sizes $1$ oz, $2$ oz, and $3$ oz. In order to save the world with grape-flavored acid, James Bond must make three full bottles, one of each size, filled with a mixture of all three liquids so that each bottle has the same ratio of juice to acid to water. How can he do this, considering he was silly enough not to bring any equipment? [b]p2.[/b] Twelve people, some are knights and some are knaves, are sitting around a table. Knaves always lie and knights always tell the truth. At some point they start up a conversation. The first person says, “There are no knights around this table.” The second says, “There is at most one knight at this table.” The third – “There are at most two knights at the table.” And so on until the $12$th says, “There are at most eleven knights at the table.” How many knights are at the table? Justify your answer. [b]p3.[/b] Aquaman has a barrel divided up into six sections, and he has placed a red herring in each. Aquaman can command any fish of his choice to either ‘jump counterclockwise to the next sector’ or ‘jump clockwise to the next sector.’ Using a sequence of exactly $30$ of these commands, can he relocate all the red herrings to one sector? If yes, show how. If no, explain why not. [img]https://cdn.artofproblemsolving.com/attachments/0/f/956f64e346bae82dee5cbd1326b0d1789100f3.png[/img] [b]p4.[/b] Is it possible to place $13$ integers around a circle so that the sum of any $3$ adjacent numbers is exactly $13$? [b]p5.[/b] Two girls are playing a game. The first player writes the letters $A$ or $B$ in a row, left to right, adding one letter on her turn. The second player switches any two letters after each move by the first player (the letters do not have to be adjacent), or does nothing, which also counts as a move. The game is over when each player has made $2011$ moves. Can the second player plan her moves so that the resulting letters form a palindrome? (A palindrome is a sequence that reads the same forward and backwards, e.g. $AABABAA$.) [u]Round 2[/u] [b]p6.[/b] Eight students participated in a math competition. There were eight problems to solve. Each problem was solved by exactly five people. Show that there are two students who solved all eight problems between them. [b]p7.[/b] There are $3n$ checkers of three different colors: $n$ red, $n$ green and $n$ blue. They were used to randomly fill a board with $3$ rows and $n$ columns so that each square of the board has one checker on it. Prove that it is possible to reshuffle the checkers within each row so that in each column there are checkers of all three colors. Moving checkers to a different row is not allowed. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1992 Miklós Schweitzer, 5

Prove that if the $a_i$'s are different natural numbers, then $\sum_ {j = 1}^n a_j ^ 2 \prod_{k \neq j} \frac{a_j + a_k}{a_j-a_k}$ is a square number.

2019 Durer Math Competition Finals, 13

Let $k > 1$ be a positive integer and $n \ge 2019$ be an odd positive integer. The non-zero rational numbers $x_1, x_2,..., x_n$ are not all equal, and satisfy the following chain of equalities: $$x_1 +\frac{k}{x_2}= x_2 +\frac{k}{x_3}= x_3 +\frac{k}{x_4}= ... = x_{n-1} +\frac{k}{x_n}= x_n +\frac{k}{x_1}.$$ What is the smallest possible value of $k$?

2022 Czech-Polish-Slovak Junior Match, 2

The number $2022$ is written on the board. In each step, we replace one of the $2$ digits with the number $2022$. For example $$2022 \Rightarrow 2020222 \Rightarrow 2020220222 \Rightarrow ...$$ After how many steps can a number divisible by $22$ be written on the board? Specify all options.

2015 Postal Coaching, Problem 5

Let $p \ge 5$ be a prime number. For a positive integer $k$, let $R(k)$ be the remainder when $k$ is divided by $p$, with $0 \le R(k) \le p-1$. Determine all positive integers $a < p$ such that, for every $m = 1, 2, \cdots, p-1$, $$ m + R(ma) > a. $$

2019 Germany Team Selection Test, 1

Determine all pairs $(n, k)$ of distinct positive integers such that there exists a positive integer $s$ for which the number of divisors of $sn$ and of $sk$ are equal.

2005 Irish Math Olympiad, 4

Find the first digit to the left and the first digit to the right of the decimal point in the expansion of $ (\sqrt{2}\plus{}\sqrt{5})^{2000}.$

1974 All Soviet Union Mathematical Olympiad, 190

Among all the numbers representable as $36^k - 5^l$ ($k$ and $l$ are natural numbers) find the smallest. Prove that it is really the smallest.

2017 Azerbaijan EGMO TST, 4

Find all natural numbers a, b such that $ a^{n}\plus{} b^{n} \equal{} c^{n\plus{}1}$ where c and n are naturals.

1996 Taiwan National Olympiad, 1

Suppose that $a,b,c$ are real numbers in $(0,\frac{\pi}{2})$ such that $a+b+c=\frac{\pi}{4}$ and $\tan{a}=\frac{1}{x},\tan{b}=\frac{1}{y},\tan{c}=\frac{1}{z}$ , where $x,y,z$ are positive integer numbers. Find $x,y,z$.

2005 MOP Homework, 7

Let $A$ be a finite subset of prime numbers and $a> 1$ be a positive integer. Show that the number of positive integers $m$ for which all prime divisors of $a^m-1$ are in $A$ is finite.

2012 Indonesia TST, 1

Given a positive integer $n$. (a) If $P$ is a polynomial of degree $n$ where $P(x) \in \mathbb{Z}$ for every $x \in \mathbb{Z}$, prove that for every $a,b \in \mathbb{Z}$ where $P(a) \neq P(b)$, \[\text{lcm}(1, 2, \ldots, n) \ge \left| \dfrac{a-b}{P(a) - P(b)} \right|\] (b) Find one $P$ (for each $n$) such that the equality case above is achieved for some $a,b \in \mathbb{Z}$.

1966 Leningrad Math Olympiad, grade 7

[b]7.1 / 6.3[/b] All integers from 1 to 1966 are written on the board. Allowed is to erase any two numbers by writing their difference instead. Prove that repeating such an operation many times cannot ensure that There are only zeros left on the board. [b]7.2 [/b] Prove that the radius of a circle is equal to the difference between the lengths of two chords, one of which subtends an arc of $1/10$ of a circle, and the other subtends an arc in $3/10$ of a circle. [b]7.3[/b] Prove that for any natural number $n$ the number $ n(2n+1)(3n+1)...(1966n + 1) $ is divisible by every prime number less than $1966$. [b]7.4[/b] What number needs to be put in place * so that the next the problem had a unique solution: [i]“There are n straight lines on the plane, intersecting at * points. Find n.” ?[/i] [b]7.5 / 6.4[/b] Black paint was sprayed onto a white surface. Prove that there are three points of the same color lying on the same line, and so, that one of the points lies in the middle between the other two. [b]7.6 [/b] There are $n$ points on the plane so that any triangle with vertices at these points has an area less than $1$. Prove that all these points can be enclosed in a triangle of area $4$. PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988082_1966_leningrad_math_olympiad]here[/url].

2017 Rioplatense Mathematical Olympiad, Level 3, 4

Is there a number $n$ such that one can write $n$ as the sum of $2017$ perfect squares and (with at least) $2017$ distinct ways?

2017 Rioplatense Mathematical Olympiad, Level 3, 3

Show that there are infinitely many pairs of positive integers $(m,n)$, with $m<n$, such that $m$ divides $n^{2016}+n^{2015}+\dots+n^2+n+1$ and $n$ divides $m^{2016}+m^{2015} +\dots+m^2+m+1$.