This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 9

1993 Denmark MO - Mohr Contest, 2

A rectangular piece of paper has the side lengths $12$ and $15$. A corner is bent about as shown in the figure. Determine the area of the gray triangle. [img]https://1.bp.blogspot.com/-HCfqWF0p_eA/XzcIhnHS1rI/AAAAAAAAMYg/KfY14frGPXUvF-H6ZVpV4RymlhD_kMs-ACLcBGAsYHQ/s0/1993%2BMohr%2Bp2.png[/img]

2018 Auckland Mathematical Olympiad, 3

A rectangular sheet of paper whose dimensions are $12 \times 18$ is folded along a diagonal, creating the $M$-shaped region drawn in the picture (see below). Find the area of the shaded region. [img]https://cdn.artofproblemsolving.com/attachments/4/7/d82cde3e91ab83fa14cd6cefe9bba28462dde1.png[/img]

Denmark (Mohr) - geometry, 1993.2

A rectangular piece of paper has the side lengths $12$ and $15$. A corner is bent about as shown in the figure. Determine the area of the gray triangle. [img]https://1.bp.blogspot.com/-HCfqWF0p_eA/XzcIhnHS1rI/AAAAAAAAMYg/KfY14frGPXUvF-H6ZVpV4RymlhD_kMs-ACLcBGAsYHQ/s0/1993%2BMohr%2Bp2.png[/img]

2017 Puerto Rico Team Selection Test, 6

Miguel has a square piece of paper $ABCD$ that he folded along a line $EF$, $E$ on $AB$, and $F$ on $CD$. This fold sent $A$ to point $A'$ on $BC$, distinct from $B$ and $C$. Also, it brought $D$ to point $D'$. $G$ is the intersection of $A'D'$ and $DC$. Prove that the inradius of $GCA'$ is equal to the sum of the inradius of $D'GF$ and $A'BE$.

Brazil L2 Finals (OBM) - geometry, 2001.1

A sheet of rectangular $ABCD$ paper, of area $1$, is folded along its diagonal $AC$ and then unfolded, then it is bent so that vertex $A$ coincides with vertex $C$ and then unfolded, leaving the crease $MN$, as shown below. a) Show that the quadrilateral $AMCN$ is a rhombus. b) If the diagonal $AC$ is twice the width $AD$, what is the area of the rhombus $AMCN$? [img]https://2.bp.blogspot.com/-TeQ0QKYGzOQ/Xp9lQcaLbsI/AAAAAAAAL2E/JLXwEIPSr4U79tATcYzmcJjK5bGA6_RqACK4BGAYYCw/s400/2001%2Baomb%2Bl2.png[/img]

Novosibirsk Oral Geo Oly VIII, 2019.3

A square sheet of paper $ABCD$ is folded straight in such a way that point $B$ hits to the midpoint of side $CD$. In what ratio does the fold line divide side $BC$?

2020-21 KVS IOQM India, 19

A semicircular paper is folded along a chord such that the folded circular arc is tangent to the diameter of the semicircle. The radius of the semicircle is $4$ units and the point of tangency divides the diameter in the ratio $7 :1$. If the length of the crease (the dotted line segment in the figure) is $\ell$ then determine $ \ell^2$. [img]https://cdn.artofproblemsolving.com/attachments/5/6/63fed83742c8baa92d9e63962a77a57d43556f.png[/img]

2021 Polish Junior MO First Round, 7

The figure below, composed of four regular pentagons with a side length of $1$, was glued in space as follows. First, it was folded along the broken sections, by combining the bold sections, and then formed in such a way that colored sections formed a square. Find the length of the segment $AB$ created in this way. [img]https://cdn.artofproblemsolving.com/attachments/0/7/bddad6449f74cbc7ea2623957ef05b3b0d2f19.png[/img]

2019 Novosibirsk Oral Olympiad in Geometry, 3

A square sheet of paper $ABCD$ is folded straight in such a way that point $B$ hits to the midpoint of side $CD$. In what ratio does the fold line divide side $BC$?