This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1049

2012 Switzerland - Final Round, 6

Let $ABCD$ be a parallelogram with at least an angle not equal to $90^o$ and $k$ the circumcircle of the triangle $ABC$. Let $E$ be the diametrically opposite point of $B$. Show that the circumcircle of the triangle $ADE$ and $k$ have the same radius.

2011 Switzerland - Final Round, 8

Let $ABCD$ be a parallelogram and $H$ the Orthocentre of $\triangle{ABC}$. The line parallel to $AB$ through $H$ intersects $BC$ at $P$ and $AD$ at $Q$ while the line parallel to $BC$ through $H$ intersects $AB$ at $R$ and $CD$ at $S$. Show that $P$, $Q$, $R$ and $S$ are concyclic. [i](Swiss Mathematical Olympiad 2011, Final round, problem 8)[/i]

2013 Costa Rica - Final Round, G2

Consider the triangle $ABC$. Let $P, Q$ inside the angle $A$ such that $\angle BAP=\angle CAQ$ and $PBQC$ is a parallelogram. Show that $\angle ABP=\angle ACP.$

2014 Contests, 3

Let $ABCDEF$ be a convex hexagon. In the hexagon there is a point $K$, such that $ABCK,DEFK$ are both parallelograms. Prove that the three lines connecting $A,B,C$ to the midpoints of segments $CE,DF,EA$ meet at one point.

2010 JBMO Shortlist, 2

Let $ABC$ be acute-angled triangle . A circle $\omega_1(O_1,R_1)$ passes through points $B$ and $C$ and meets the sides $AB$ and $AC$ at points $D$ and $E$ ,respectively . Let $\omega_2(O_2,R_2)$ be the circumcircle of triangle $ADE$ . Prove that $O_1O_2$ is equal to the circumradius of triangle $ABC$ .

2016 Nigerian Senior MO Round 2, Problem 9

$ABCD$ is a parallelogram, line $DF$ is drawn bisecting $BC$ at $E$ and meeting $AB$ (extended) at $F$ from vertex $C$. Line $CH$ is drawn bisecting side $AD$ at $G$ and meeting $AB$ (extended) at $H$. Lines $DF$ and $CH$ intersect at $I$. If the area of parallelogram $ABCD$ is $x$, find the area of triangle $HFI$ in terms of $x$.

2006 Estonia Math Open Junior Contests, 3

Let ABCD be a parallelogram, M the midpoint of AB and N the intersection of CD and the angle bisector of ABC. Prove that CM and BN are perpendicular iff AN is the angle bisector of DAB.

2016 Korea Summer Program Practice Test, 7

A infinite sequence $\{ a_n \}_{n \ge 0}$ of real numbers satisfy $a_n \ge n^2$. Suppose that for each $i, j \ge 0$ there exist $k, l$ with $(i,j) \neq (k,l)$, $l - k = j - i$, and $a_l - a_k = a_j - a_i$. Prove that $a_n \ge (n + 2016)^2$ for some $n$.

2012 Brazil Team Selection Test, 4

Let $ABCD$ be a convex quadrilateral whose sides $AD$ and $BC$ are not parallel. Suppose that the circles with diameters $AB$ and $CD$ meet at points $E$ and $F$ inside the quadrilateral. Let $\omega_E$ be the circle through the feet of the perpendiculars from $E$ to the lines $AB,BC$ and $CD$. Let $\omega_F$ be the circle through the feet of the perpendiculars from $F$ to the lines $CD,DA$ and $AB$. Prove that the midpoint of the segment $EF$ lies on the line through the two intersections of $\omega_E$ and $\omega_F$. [i]Proposed by Carlos Yuzo Shine, Brazil[/i]

2022 USA TSTST, 7

Let $ABCD$ be a parallelogram. Point $E$ lies on segment $CD$ such that \[2\angle AEB=\angle ADB+\angle ACB,\] and point $F$ lies on segment $BC$ such that \[2\angle DFA=\angle DCA+\angle DBA.\] Let $K$ be the circumcenter of triangle $ABD$. Prove that $KE=KF$. [i]Merlijn Staps[/i]

2004 All-Russian Olympiad Regional Round, 8.6

Let $ABCD$ be a quadrilateral with parallel sides $AD$ and $BC$, $M$ and $N$ are the midpoints of its sides $AB$ and $CD$, respectively. The straight line $MN$ bisects the segment connecting the centers of the circumcircles of triangles $ABC$ and $ADC$. Prove that $ABCD$ is a parallelogram.

1974 AMC 12/AHSME, 25

In parallelogram $ABCD$ of the accompanying diagram, line $DP$ is drawn bisecting $BC$ at $N$ and meeting $AB$ (extended) at $P$. From vertex $C$, line $CQ$ is drawn bisecting side $AD$ at $M$ and meeting $AB$ (extended) at $Q$. Lines $DP$ and $CQ$ meet at $O$. If the area of parallelogram $ABCD$ is $k$, then the area of the triangle $QPO$ is equal to [asy] size((400)); draw((0,0)--(5,0)--(6,3)--(1,3)--cycle); draw((6,3)--(-5,0)--(10,0)--(1,3)); label("A", (0,0), S); label("B", (5,0), S); label("C", (6,3), NE); label("D", (1,3), NW); label("P", (10,0), E); label("Q", (-5,0), W); label("M", (.5,1.5), NW); label("N", (5.65, 1.5), NE); label("O", (3.4,1.75)); [/asy] $ \textbf{(A)}\ k \qquad\textbf{(B)}\ \frac{6k}{5} \qquad\textbf{(C)}\ \frac{9k}{8} \qquad\textbf{(D)}\ \frac{5k}{4} \qquad\textbf{(E)}\ 2k $

2002 China Team Selection Test, 2

Circles $ \omega_{1}$ and $ \omega_{2}$ intersect at points $ A$ and $ B.$ Points $ C$ and $ D$ are on circles $ \omega_{1}$ and $ \omega_{2},$ respectively, such that lines $ AC$ and $ AD$ are tangent to circles $ \omega_{2}$ and $ \omega_{1},$ respectively. Let $ I_{1}$ and $ I_{2}$ be the incenters of triangles $ ABC$ and $ ABD,$ respectively. Segments $ I_{1}I_{2}$ and $ AB$ intersect at $ E$. Prove that: $ \frac {1}{AE} \equal{} \frac {1}{AC} \plus{} \frac {1}{AD}$

2011 International Zhautykov Olympiad, 1

Given is trapezoid $ABCD$, $M$ and $N$ being the midpoints of the bases of $AD$ and $BC$, respectively. a) Prove that the trapezoid is isosceles if it is known that the intersection point of perpendicular bisectors of the lateral sides belongs to the segment $MN$. b) Does the statement of point a) remain true if it is only known that the intersection point of perpendicular bisectors of the lateral sides belongs to the line $MN$?

2025 EGMO, 4

Let $ABC$ be an acute triangle with incentre $I$ and $AB \neq AC$. Let lines $BI$ and $CI$ intersect the circumcircle of $ABC$ at $P \neq B$ and $Q \neq C$, respectively. Consider points $R$ and $S$ such that $AQRB$ and $ACSP$ are parallelograms (with $AQ \parallel RB, AB \parallel QR, AC \parallel SP$, and $AP \parallel CS$). Let $T$ be the point of intersection of lines $RB$ and $SC$. Prove that points $R, S, T$, and $I$ are concyclic.

2014 Iran MO (3rd Round), 4

$D$ is an arbitrary point lying on side $BC$ of $\triangle{ABC}$. Circle $\omega_1$ is tangent to segments $AD$ , $BD$ and the circumcircle of $\triangle{ABC}$ and circle $\omega_2$ is tangent to segments $AD$ , $CD$ and the circumcircle of $\triangle{ABC}$. Let $X$ and $Y$ be the intersection points of $\omega_1$ and $\omega_2$ with $BC$ respectively and take $M$ as the midpoint of $XY$. Let $T$ be the midpoint of arc $BC$ which does not contain $A$. If $I$ is the incenter of $\triangle{ABC}$, prove that $TM$ goes through the midpoint of $ID$.

2019 Polish Junior MO First Round, 5

A parallelogram $ABCD$ is given. On the diagonal BD, a point $P$ is selected such that $AP = BD$ is satisfied. Point $Q$ is the midpoint of segment $CP$. Prove that $\angle BQD = 90^o$. [img]https://cdn.artofproblemsolving.com/attachments/2/0/4bc69ec0330e2afa6b560c56da5dd783b16efb.png[/img] .

2020 Iranian Geometry Olympiad, 2

A parallelogram $ABCD$ is given ($AB \neq BC$). Points $E$ and $G$ are chosen on the line $\overline{CD}$ such that $\overline{AC}$ is the angle bisector of both angles $\angle EAD$ and $\angle BAG$. The line $\overline{BC}$ intersects $\overline{AE}$ and $\overline{AG}$ at $F$ and $H$, respectively. Prove that the line $\overline{FG}$ passes through the midpoint of $HE$. [i]Proposed by Mahdi Etesamifard[/i]

2005 India Regional Mathematical Olympiad, 1

Let ABCD be a convex quadrilateral; P,Q, R,S are the midpoints of AB, BC, CD, DA respectively such that triangles AQR, CSP are equilateral. Prove that ABCD is a rhombus. Find its angles.

2009 District Round (Round II), 4

in an acute triangle $ABC$,$D$ is a point on $BC$,let $Q$ be the intersection of $AD$ and the median of $ABC$from $C$,$P$ is a point on $AD$,distinct from $Q$.the circumcircle of $CPD$ intersects $CQ$ at $C$ and $K$.prove that the circumcircle of $AKP$ passes through a fixed point differ from $A$.

1965 IMO Shortlist, 5

Consider $\triangle OAB$ with acute angle $AOB$. Thorugh a point $M \neq O$ perpendiculars are drawn to $OA$ and $OB$, the feet of which are $P$ and $Q$ respectively. The point of intersection of the altitudes of $\triangle OPQ$ is $H$. What is the locus of $H$ if $M$ is permitted to range over a) the side $AB$; b) the interior of $\triangle OAB$.

2018 Belarus Team Selection Test, 1.2

Given the parallelogram $ABCD$. The circle $S_1$ passes through the vertex $C$ and touches the sides $BA$ and $AD$ at points $P_1$ and $Q_1$, respectively. The circle $S_2$ passes through the vertex $B$ and touches the side $DC$ at points $P_2$ and $Q_2$, respectively. Let $d_1$ and $d_2$ be the distances from $C$ and $B$ to the lines $P_1Q_1$ and $P_2Q_2$, respectively. Find all possible values of the ratio $d_1:d_2$. [i](I. Voronovich)[/i]

2009 AMC 12/AHSME, 20

Convex quadrilateral $ ABCD$ has $ AB\equal{}9$ and $ CD\equal{}12$. Diagonals $ AC$ and $ BD$ intersect at $ E$, $ AC\equal{}14$, and $ \triangle AED$ and $ \triangle BEC$ have equal areas. What is $ AE$? $ \textbf{(A)}\ \frac{9}{2}\qquad \textbf{(B)}\ \frac{50}{11}\qquad \textbf{(C)}\ \frac{21}{4}\qquad \textbf{(D)}\ \frac{17}{3}\qquad \textbf{(E)}\ 6$

1966 IMO Longlists, 17

Let $ABCD$ and $A^{\prime }B^{\prime}C^{\prime }D^{\prime }$ be two arbitrary parallelograms in the space, and let $M,$ $N,$ $P,$ $Q$ be points dividing the segments $AA^{\prime },$ $BB^{\prime },$ $CC^{\prime },$ $DD^{\prime }$ in equal ratios. [b]a.)[/b] Prove that the quadrilateral $MNPQ$ is a parallelogram. [b]b.)[/b] What is the locus of the center of the parallelogram $MNPQ,$ when the point $M$ moves on the segment $AA^{\prime }$ ? (Consecutive vertices of the parallelograms are labelled in alphabetical order.

1975 USAMO, 2

Let $ A,B,C,$ and $ D$ denote four points in space and $ AB$ the distance between $ A$ and $ B$, and so on. Show that \[ AC^2\plus{}BD^2\plus{}AD^2\plus{}BC^2 \ge AB^2\plus{}CD^2.\]