This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 134

2024 Baltic Way, 4

Find the largest real number $\alpha$ such that, for all non-negative real numbers $x$, $y$ and $z$, the following inequality holds: \[ (x+y+z)^3 + \alpha (x^2z + y^2x + z^2y) \geq \alpha (x^2y + y^2z + z^2x). \]

1963 IMO Shortlist, 4

Find all solutions $x_1, x_2, x_3, x_4, x_5$ of the system \[ x_5+x_2=yx_1 \] \[ x_1+x_3=yx_2 \] \[ x_2+x_4=yx_3 \] \[ x_3+x_5=yx_4 \] \[ x_4+x_1=yx_5 \] where $y$ is a parameter.

2007 AIME Problems, 2

A 100 foot long moving walkway moves at a constant rate of 6 feet per second. Al steps onto the start of the walkway and stands. Bob steps onto the start of the walkway two seconds later and strolls forward along the walkway at a constant rate of 4 feet per second. Two seconds after that, Cy reaches the start of the walkway and walks briskly forward beside the walkway at a constant rate of 8 feet per second. At a certain time, one of these three persons is exactly halfway between the other two. At that time, find the distance in feet between the start of the walkway and the middle person.

1992 Flanders Math Olympiad, 4

Let $A,B,P$ positive reals with $P\le A+B$. (a) Choose reals $\theta_1,\theta_2$ with $A\cos\theta_1 + B\cos\theta_2=P$ and prove that \[ A\sin\theta_1 + B\sin\theta_2 \le \sqrt{(A+B-P)(A+B+P)} \] (b) Prove equality is attained when $\theta_1=\theta_2=\arccos\left(\dfrac{P}{A+B}\right)$. (c) Take $A=\dfrac{1}{2}xy, B=\dfrac{1}{2}wz$ and $P=\dfrac14 \left(x^2+y^2-z^2-w^2\right)$ with $0<x\le y\le x+z+w$, $z,w>0$ and $z^2+w^2<x^2+y^2$. Show that we can translate (a) and (b) into the following theorem: from all quadrilaterals with (ordered) sidelenghts $(x,y,z,w)$, the cyclical one has the greatest area.

2008 Greece Team Selection Test, 4

Given is the equation $x^2+y^2-axy+2=0$ where $a$ is a positive integral parameter. $i.$Show that,for $a\neq 4$ there exist no pairs $(x,y)$ of positive integers satisfying the equation. $ii.$ Show that,for $a=4$ there exist infinite pairs $(x,y)$ of positive integers satisfying the equation,and determine those pairs.

2017 Bosnia And Herzegovina - Regional Olympiad, 1

In terms of real parameter $a$ solve inequality: $\log _{a} {x} + \mid a+\log _{a} {x} \mid \cdot \log _{\sqrt{x}} {a} \geq a\log _{x} {a}$ in set of real numbers

2018 Bosnia And Herzegovina - Regional Olympiad, 1

Find all values of real parameter $a$ for which equation $2{\sin}^4(x)+{\cos}^4(x)=a$ has real solutions

2013 USAMO, 4

Find all real numbers $x,y,z\geq 1$ satisfying \[\min(\sqrt{x+xyz},\sqrt{y+xyz},\sqrt{z+xyz})=\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}.\]

1995 National High School Mathematics League, 1

Give a family of curves $2(2\sin\theta-\cos\theta+3)x^2-(8\sin\theta+\cos\theta+1)=0$, where $\theta$ is a parameter. Find the maximum value of the length of the chord that $y=2x$ intersects the curve.

2023 Israel National Olympiad, P4

For each positive integer $n$, find all triples $a,b,c$ of real numbers for which \[\begin{cases}a=b^n+c^n\\ b=c^n+a^n\\ c=a^n+b^n\end{cases}\]

1966 IMO Shortlist, 31

Solve the equation $|x^2 -1|+ |x^2 - 4| = mx$ as a function of the parameter $m$. Which pairs $(x,m)$ of integers satisfy this equation?

1964 AMC 12/AHSME, 25

The set of values of $m$ for which $x^2+3xy+x+my-m$ has two factors, with integer coefficients, which are linear in $x$ and $y$, is precisely: $ \textbf{(A)}\ 0, 12, -12\qquad\textbf{(B)}\ 0, 12\qquad\textbf{(C)}\ 12, -12\qquad\textbf{(D)}\ 12\qquad\textbf{(E)}\ 0 $

2005 Denmark MO - Mohr Contest, 2

Determine, for any positive real number $a$, the number of solutions $(x,y)$ to the system of equations $$\begin{cases} |x|+|y|= 1 \\ x^2 + y^2 = a \end{cases}$$ where $x$ and $y$ are real numbers.

2012 Bosnia And Herzegovina - Regional Olympiad, 1

Solve equation $$x^2-\sqrt{a-x}=a$$ where $x$ is real number and $a$ is real parameter

2011 Today's Calculation Of Integral, 732

Let $a$ be parameter such that $0<a<2\pi$. For $0<x<2\pi$, find the extremum of $F(x)=\int_{x}^{x+a} \sqrt{1-\cos \theta}\ d\theta$.

1966 IMO Shortlist, 50

Solve the equation $\frac{1}{\sin x}+\frac{1}{\cos x}=\frac 1p$ where $p$ is a real parameter. Discuss for which values of $p$ the equation has at least one real solution and determine the number of solutions in $[0, 2\pi)$ for a given $p.$

1987 Greece National Olympiad, 3

Solve for real values of parameter $a$, the inequality : $$\sqrt{a+x}+ \sqrt{a-x}>a , \ \ x\in\mathbb{R}$$

2014 ELMO Shortlist, 3

Let $a,b,c,d,e,f$ be positive real numbers. Given that $def+de+ef+fd=4$, show that \[ ((a+b)de+(b+c)ef+(c+a)fd)^2 \geq\ 12(abde+bcef+cafd). \][i]Proposed by Allen Liu[/i]

2006 Moldova National Olympiad, 10.4

Find all real values of the real parameter $a$ such that the equation \[ 2x^{2}-6ax+4a^{2}-2a-2+\log_{2}(2x^{2}+2x-6ax+4a^{2})= \] \[ =\log_{2}(x^{2}+2x-3ax+2a^{2}+a+1). \] has a unique solution.

2018 Belarusian National Olympiad, 11.1

Find all real numbers $a$ for which there exists a function $f$ defined on the set of all real numbers which takes as its values all real numbers exactly once and satisfies the equality $$ f(f(x))=x^2f(x)+ax^2 $$ for all real $x$.

1957 AMC 12/AHSME, 34

The points that satisfy the system $ x \plus{} y \equal{} 1,\, x^2 \plus{} y^2 < 25,$ constitute the following set: $ \textbf{(A)}\ \text{only two points} \qquad \\ \textbf{(B)}\ \text{an arc of a circle}\qquad \\ \textbf{(C)}\ \text{a straight line segment not including the end\minus{}points}\qquad \\ \textbf{(D)}\ \text{a straight line segment including the end\minus{}points}\qquad \\ \textbf{(E)}\ \text{a single point}$

2008 District Olympiad, 3

For any real $ a$ define $ f_a : \mathbb{R} \rightarrow \mathbb{R}^2$ by the law $ f_a(t) \equal{} \left( \sin(t), \cos(at) \right)$. a) Prove that $ f_{\pi}$ is not periodic. b) Determine the values of the parameter $ a$ for which $ f_a$ is periodic. [b]Remark[/b]. L. Euler proved in $ 1737$ that $ \pi$ is irrational.

2005 Unirea, 4

$a>0$ $f:[-a,a]\rightarrow R$ such that $f''$ exist and Riemann-integrable suppose $f(a)=f(-a)$ $ f'(-a)=f'(a)=a^2$ Prove that $6a^3\leq \int_{-a}^{a}{f''(x)}^2dx$ Study equality case ? Radu Miculescu

1966 IMO Longlists, 31

Solve the equation $|x^2 -1|+ |x^2 - 4| = mx$ as a function of the parameter $m$. Which pairs $(x,m)$ of integers satisfy this equation?

2022 Israel TST, 1

Let $n>1$ be an integer. Find all $r\in \mathbb{R}$ so that the system of equations in real variables $x_1, x_2, \dots, x_n$: \begin{align*} &(r\cdot x_1-x_2)(r\cdot x_1-x_3)\dots (r\cdot x_1-x_n)=\\ =&(r\cdot x_2-x_1)(r\cdot x_2-x_3)\dots (r\cdot x_2-x_n)=\\ &\qquad \qquad \qquad \qquad \vdots \\ =&(r\cdot x_n-x_1)(r\cdot x_n-x_2)\dots (r\cdot x_n-x_{n-1}) \end{align*} has a solution where the numbers $x_1, x_2, \dots, x_n$ are pairwise distinct.