Found problems: 175
1997 IMO, 3
Let $ x_1$, $ x_2$, $ \ldots$, $ x_n$ be real numbers satisfying the conditions:
\[ \left\{\begin{array}{cccc} |x_1 \plus{} x_2 \plus{} \cdots \plus{} x_n | & \equal{} & 1 & \ \\
|x_i| & \leq & \displaystyle \frac {n \plus{} 1}{2} & \ \textrm{ for }i \equal{} 1, 2, \ldots , n. \end{array} \right.
\]
Show that there exists a permutation $ y_1$, $ y_2$, $ \ldots$, $ y_n$ of $ x_1$, $ x_2$, $ \ldots$, $ x_n$ such that
\[ | y_1 \plus{} 2 y_2 \plus{} \cdots \plus{} n y_n | \leq \frac {n \plus{} 1}{2}.
\]
1990 IMO Longlists, 12
For any permutation $p$ of set $\{1, 2, \ldots, n\}$, define $d(p) = |p(1) - 1| + |p(2) - 2| + \ldots + |p(n) - n|$. Denoted by $i(p)$ the number of integer pairs $(i, j)$ in permutation $p$ such that $1 \leqq < j \leq n$ and $p(i) > p(j)$. Find all the real numbers $c$, such that the inequality $i(p) \leq c \cdot d(p)$ holds for any positive integer $n$ and any permutation $p.$
1987 IMO Shortlist, 16
Let $p_n(k)$ be the number of permutations of the set $\{1,2,3,\ldots,n\}$ which have exactly $k$ fixed points. Prove that $\sum_{k=0}^nk p_n(k)=n!$.[i](IMO Problem 1)[/i]
[b][i]Original formulation [/i][/b]
Let $S$ be a set of $n$ elements. We denote the number of all permutations of $S$ that have exactly $k$ fixed points by $p_n(k).$ Prove:
(a) $\sum_{k=0}^{n} kp_n(k)=n! \ ;$
(b) $\sum_{k=0}^{n} (k-1)^2 p_n(k) =n! $
[i]Proposed by Germany, FR[/i]
1984 IMO Longlists, 22
In a permutation $(x_1, x_2, \dots , x_n)$ of the set $1, 2, \dots , n$ we call a pair $(x_i, x_j )$ discordant if $i < j$ and $x_i > x_j$. Let $d(n, k)$ be the number of such permutations with exactly $k$ discordant pairs. Find $d(n, 2)$ and $d(n, 3).$
2021 Kyiv City MO Round 1, 7.4
A rectangle $3 \times 5$ is divided into $15$ $1 \times 1$ cells. The middle $3$ cells that have no common points with the border of the rectangle are deleted. Is it possible to put in the remaining $12$ cells numbers $1, 2, \ldots, 12$ in some order, so that the sums of the numbers in the cells along each of the four sides of the rectangle are equal?
[i]Proposed by Mariia Rozhkova[/i]
2024 Romanian Master of Mathematics, 1
Let $n$ be a positive integer. Initially, a bishop is placed in each square of the top row of a $2^n \times 2^n$
chessboard; those bishops are numbered from $1$ to $2^n$ from left to right. A [i]jump[/i] is a simultaneous move made by all bishops such that each bishop moves diagonally, in a straight line, some number of squares, and at the end of the jump, the bishops all stand in different squares of the same row.
Find the total number of permutations $\sigma$ of the numbers $1, 2, \ldots, 2^n$ with the following property: There exists a sequence of jumps such that all bishops end up on the bottom row arranged in the order $\sigma(1), \sigma(2), \ldots, \sigma(2^n)$, from left to right.
[i]Israel[/i]
1968 IMO Shortlist, 20
Given $n \ (n \geq 3)$ points in space such that every three of them form a triangle with one angle greater than or equal to $120^\circ$, prove that these points can be denoted by $A_1,A_2, \ldots,A_n$ in such a way that for each $i, j, k, 1 \leq i < j < k \leq n$, angle $A_iA_jA_k$ is greater than or equal to $120^\circ . $
2018 Saudi Arabia IMO TST, 3
Find all positive integers $k$ such that there exists some permutation of $(1, 2,...,1000)$ namely $(a_1, a_2,..., a_{1000}) $ and satisfy $|a_i - i| = k$ for all $i = 1,1000$.
2003 Gheorghe Vranceanu, 4
Prove that among any $ 16 $ numbers smaller than $ 101 $ there are four of them that have the property that the sum of two of them is equal to the sum of the other two.
2013 India IMO Training Camp, 1
Let $n \ge 2$ be an integer. There are $n$ beads numbered $1, 2, \ldots, n$. Two necklaces made out of some of these beads are considered the same if we can get one by rotating the other (with no flipping allowed). For example, with $n \ge 5$, the necklace with four beads $1, 5, 3, 2$ in the clockwise order is same as the one with $5, 3, 2, 1$ in the clockwise order, but is different from the one with $1, 2, 3, 5$ in the clockwise order.
We denote by $D_0(n)$ (respectively $D_1(n)$) the number of ways in which we can use all the beads to make an even number (resp. an odd number) of necklaces each of length at least $3$. Prove that $n - 1$ divides $D_1(n) - D_0(n)$.
2016 Estonia Team Selection Test, 9
Let $n$ be a positive integer such that there exists a positive integer that is less than $\sqrt{n}$ and does not divide $n$. Let $(a_1, . . . , a_n)$ be an arbitrary permutation of $1, . . . , n$. Let $a_{i1} < . . . < a_{ik}$ be its maximal increasing subsequence and let $a_{j1} > . . . > a_{jl}$ be its maximal decreasing subsequence.
Prove that tuples $(a_{i1}, . . . , a_{ik})$ and $(a_{j1}, . . . , a_{jl} )$ altogether contain at least one number that does not divide $n$.
2018 Pan-African Shortlist, C4
Seven cyclists follow one another, in a line, on a narrow way. By the end of the training, each cyclist complains about the style of driving of the one in front of him. They agree to rearrange themselves the next day, so that no cyclist would follow the same cyclist he follows the first day. How many such rearrangements are possible?
2012 Dutch IMO TST, 4
Let $n$ be a positive integer divisible by $4$. We consider the permutations $(a_1, a_2,...,a_n)$ of $(1,2,..., n)$ having the following property: for each j we have $a_i + j = n + 1$ where $i = a_j$ . Prove that there are exactly $\frac{ (\frac12 n)!}{(\frac14 n)!}$ such permutations.
2014 IMC, 5
For every positive integer $n$, denote by $D_n$ the number of permutations $(x_1, \dots, x_n)$ of $(1,2,\dots, n)$ such that $x_j\neq j$ for every $1\le j\le n$. For $1\le k\le \frac{n}{2}$, denote by $\Delta (n,k)$ the number of permutations $(x_1,\dots, x_n)$ of $(1,2,\dots, n)$ such that $x_i=k+i$ for every $1\le i\le k$ and $x_j\neq j$ for every $1\le j\le n$. Prove that
$$\Delta (n,k)=\sum_{i=0}^{k=1} \binom{k-1}{i} \frac{D_{(n+1)-(k+i)}}{n-(k+i)}$$
(Proposed by Combinatorics; Ferdowsi University of Mashhad, Iran; Mirzavaziri)
2023 239 Open Mathematical Olympiad, 5
On a table, cards numbered $1, 2, \ldots , 200$ are laid out in a row in some order, and a line is drawn on the table between some two of them. It is allowed to swap two adjacent cards if the number on the left is greater than the number on the right. After a few such moves, the cards were arranged in ascending order. Prove we have swapped pairs of cards separated by the line no more than 1884 times.
2022 Tuymaada Olympiad, 5
Each row of a $24 \times 8$ table contains some permutation of the numbers $1, 2, \cdots , 8.$ In each column the numbers are multiplied. What is the minimum possible sum of all the products?
[i](C. Wu)[/i]
2021 Korea Winter Program Practice Test, 5
For positive integers $k$ and $n$, express the number of permutation $P=x_1x_2...x_{2n}$ consisting of $A$ and $B$ that satisfies all three of the following conditions, using $k$ and $n$.
$ $ $ $ $(i)$ $A, B$ appear exactly $n$ times respectively in $P$.
$ $ $ $ $(ii)$ For each $1\le i\le n$, if we denote the number of $A$ in $x_1,x_2,...,x_i$ as $a_i$ $,$ then $\mid 2a_i -i\mid \le 1$.
$ $ $ $ $(iii)$ $AB$ appears exactly $k$ times in $P$. (For example, $AB$ appears 3 times in $ABBABAAB$)
2005 Gheorghe Vranceanu, 1
Let be a natural number $ n\ge 2 $ and the $ n\times n $ matrix whose entries at the $ \text{i-th} $ line and $ \text{j-th} $ column is $ \min (i,j) . $ Calculate:
[b]a)[/b] its determinant.
[b]b)[/b] its inverse.
Gheorghe Țițeica 2025, P4
Let $n\geq 2$ and $\mathcal{M}$ be a subset of $S_n$ with at least two elements, and which is closed under composition. Consider a function $f:\mathcal{M}\rightarrow\mathbb{R}$ which satisfies $$|f(\sigma\tau)-f(\sigma)-f(\tau)|\leq 1,$$ for all $\sigma,\tau\in\mathcal{M}$. Prove that $$\max_{\sigma,\tau\in\mathcal{M}}|f(\sigma)-f(\tau)|\leq 2-\frac{2}{|\mathcal{M}|}.$$
2009 Romania National Olympiad, 3
Let be a natural number $ n, $ a permutation $ \sigma $ of order $ n, $ and $ n $ nonnegative real numbers $ a_1,a_2,\ldots , a_n. $ Prove the following inequality.
$$ \left( a_1^2+a_{\sigma (1)} \right)\left( a_2^2+a_{\sigma (2)} \right)\cdots \left( a_n^2+a_{\sigma (n)} \right)\ge \left( a_1^2+a_1 \right)\left( a_2^2+a_{2} \right)\cdots \left( a_n^2+a_n \right) $$
2016 Bangladesh Mathematical Olympiad, 5
Suppose there are $m$ Martians and $n$ Earthlings at an intergalactic peace conference. To ensure the Martians stay peaceful at the conference, we must make sure that no two Martians sit together, such that between any two Martians there is always at least one Earthling.
(a) Suppose all $m + n$ Martians and Earthlings are seated in a line. How many ways can the Earthlings and Martians be seated in a line?
(b) Suppose now that the $m+n$ Martians and Earthlings are seated around a circular round-table. How many ways can the Earthlings and Martians be seated around the round-table?
1906 Eotvos Mathematical Competition, 3
Let $a_1, a_2, ...,a_n$ represent an arbitrary arrangement of the numbers $1, 2, ...,n$. Prove that, if $n$ is odd, the product $$(a_1 - 1)(a_2 - 2) ... (a_n -n)$$ is an even number.
2002 Iran MO (2nd round), 1
Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which
\[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\]
Find the number of elements of the set $A_n$.
[i]Proposed by Vidan Govedarica, Serbia[/i]
Russian TST 2019, P2
For each permutation $\sigma$ of the set $\{1, 2, \ldots , N\}$ we define its [i]correctness[/i] as the number of triples $1 \leqslant i < j < k \leqslant N$ such that the number $\sigma(j)$ lies between the numbers $\sigma(i)$ and $\sigma(k)$. Find the difference between the number of permutations with even correctness and the number of permutations with odd correctness if a) $N = 2018$ and b) $N = 2019$.
1998 IMO Shortlist, 3
Cards numbered 1 to 9 are arranged at random in a row. In a move, one may choose any block of consecutive cards whose numbers are in ascending or descending order, and switch the block around. For example, 9 1 $\underline{6\ 5\ 3}$ $2\ 7\ 4\ 8$ may be changed to $9 1$ $\underline{3\ 5\ 6}$ $2\ 7\ 4\ 8$. Prove that in at most 12 moves, one can arrange the 9 cards so that their numbers are in ascending or descending order.