This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 533

2001 National Olympiad First Round, 18

A convex polygon has at least one side with length $1$. If all diagonals of the polygon have integer lengths, at most how many sides does the polygon have? $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 5 \qquad\textbf{(C)}\ 7 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ \text{None of the preceding} $

2016 Sharygin Geometry Olympiad, 7

Diagonals of a quadrilateral $ABCD$ are equal and meet at point $O$. The perpendicular bisectors to segments $AB$ and $CD$ meet at point $P$, and the perpendicular bisectors to $BC$ and $AD$ meet at point $Q$. Find angle $\angle POQ$. by A.Zaslavsky

2009 Greece Team Selection Test, 2

Given is a triangle $ABC$ with barycenter $G$ and circumcenter $O$.The perpendicular bisectors of $GA,GB,GC$ intersect at $A_1,B_1,C_1$.Show that $O$ is the barycenter of $\triangle{A_1B_1C_1}$.

2005 Cono Sur Olympiad, 1

Let $ABC$ be a isosceles triangle, with $AB=AC$. A line $r$ that pass through the incenter $I$ of $ABC$ touches the sides $AB$ and $AC$ at the points $D$ and $E$, respectively. Let $F$ and $G$ be points on $BC$ such that $BF=CE$ and $CG=BD$. Show that the angle $\angle FIG$ is constant when we vary the line $r$.

2003 Federal Math Competition of S&M, Problem 3

Let $ABCD$ be a rectangle. Determine the set of all points $P$ from the region between the parallel lines $AB$ and $CD$ such that $\angle APB=\angle CPD$.

2010 AMC 10, 19

A circle with center $ O$ has area $ 156\pi$. Triangle $ ABC$ is equilateral, $ \overline{BC}$ is a chord on the circle, $ OA \equal{} 4\sqrt3$, and point $ O$ is outside $ \triangle ABC$. What is the side length of $ \triangle ABC$? $ \textbf{(A)}\ 2\sqrt3 \qquad\textbf{(B)}\ 6 \qquad\textbf{(C)}\ 4\sqrt3 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 18$

2007 India IMO Training Camp, 1

Show that in a non-equilateral triangle, the following statements are equivalent: $(a)$ The angles of the triangle are in arithmetic progression. $(b)$ The common tangent to the Nine-point circle and the Incircle is parallel to the Euler Line.

1993 Bundeswettbewerb Mathematik, 3

In the triangle $ABC$, let $A'$ be the intersection of the perpendicular bisector of $AB$ and the angle bisector of $\angle BAC$ and define $B', C'$ analogously. Prove that a) The triangle $ABC$ is equilateral if and only if $A' =B'.$ b) If $A', B'$ and $C'$ are distinct, we have $\angle B' A' C' = 90^{\circ} - \frac{1}{2} \angle BAC.$

1999 Junior Balkan MO, 4

Let $ABC$ be a triangle with $AB=AC$. Also, let $D\in[BC]$ be a point such that $BC>BD>DC>0$, and let $\mathcal{C}_1,\mathcal{C}_2$ be the circumcircles of the triangles $ABD$ and $ADC$ respectively. Let $BB'$ and $CC'$ be diameters in the two circles, and let $M$ be the midpoint of $B'C'$. Prove that the area of the triangle $MBC$ is constant (i.e. it does not depend on the choice of the point $D$). [i]Greece[/i]

2021 Saudi Arabia Training Tests, 3

Let $ABC$ be an acute, non-isosceles triangle inscribed in (O) and $BB'$, $CC'$ are altitudes. Denote $E, F$ as the intersections of $BB'$, $CC'$ with $(O)$ and $D, P, Q$ are projections of $A$ on $BC$, $CE$, $BF$. Prove that the perpendicular bisectors of $PQ$ bisects two segments $AO$, $BC$.

1999 China Team Selection Test, 1

A circle is tangential to sides $AB$ and $AD$ of convex quadrilateral $ABCD$ at $G$ and $H$ respectively, and cuts diagonal $AC$ at $E$ and $F$. What are the necessary and sufficient conditions such that there exists another circle which passes through $E$ and $F$, and is tangential to $DA$ and $DC$ extended?

2014 Bosnia Herzegovina Team Selection Test, 3

Let $D$ and $E$ be foots of altitudes from $A$ and $B$ of triangle $ABC$, $F$ be intersection point of angle bisector from $C$ with side $AB$, and $O$, $I$ and $H$ be circumcenter, center of inscribed circle and orthocenter of triangle $ABC$, respectively. If $\frac{CF}{AD}+ \frac{CF}{BE}=2$, prove that $OI = IH$.

2011 China Girls Math Olympiad, 2

The diagonals $AC,BD$ of the quadrilateral $ABCD$ intersect at $E$. Let $M,N$ be the midpoints of $AB,CD$ respectively. Let the perpendicular bisectors of the segments $AB,CD$ meet at $F$. Suppose that $EF$ meets $BC,AD$ at $P,Q$ respectively. If $MF\cdot CD=NF\cdot AB$ and $DQ\cdot BP=AQ\cdot CP$, prove that $PQ\perp BC$.

2010 China Western Mathematical Olympiad, 2

$AB$ is a diameter of a circle with center $O$. Let $C$ and $D$ be two different points on the circle on the same side of $AB$, and the lines tangent to the circle at points $C$ and $D$ meet at $E$. Segments $AD$ and $BC$ meet at $F$. Lines $EF$ and $AB$ meet at $M$. Prove that $E,C,M$ and $D$ are concyclic.

2014 Middle European Mathematical Olympiad, 5

Let $ABC$ be a triangle with $AB < AC$. Its incircle with centre $I$ touches the sides $BC, CA,$ and $AB$ in the points $D, E,$ and $F$ respectively. The angle bisector $AI$ intersects the lines $DE$ and $DF$ in the points $X$ and $Y$ respectively. Let $Z$ be the foot of the altitude through $A$ with respect to $BC$. Prove that $D$ is the incentre of the triangle $XYZ$.

2013 India Regional Mathematical Olympiad, 3

In an acute-angled triangle $ABC$ with $AB < AC$, the circle $\omega$ touches $AB$ at $B$ and passes through $C$ intersecting $AC$ again at $D$. Prove that the orthocentre of triangle $ABD$ lies on $\omega$ if and only if it lies on the perpendicular bisector of $BC$.

2012 Sharygin Geometry Olympiad, 3

A circle with center $I$ touches sides $AB,BC,CA$ of triangle $ABC$ in points $C_{1},A_{1},B_{1}$. Lines $AI, CI, B_{1}I$ meet $A_{1}C_{1}$ in points $X, Y, Z$ respectively. Prove that $\angle Y B_{1}Z = \angle XB_{1}Z$.

2019 Oral Moscow Geometry Olympiad, 4

The perpendicular bisector of the bisector $BL$ of the triangle $ABC$ intersects the bisectors of its external angles $A$ and $C$ at points $P$ and $Q$, respectively. Prove that the circle circumscribed around the triangle $PBQ$ is tangent to the circle circumscribed around the triangle $ABC$.

2013 ELMO Shortlist, 13

In $\triangle ABC$, $AB<AC$. $D$ and $P$ are the feet of the internal and external angle bisectors of $\angle BAC$, respectively. $M$ is the midpoint of segment $BC$, and $\omega$ is the circumcircle of $\triangle APD$. Suppose $Q$ is on the minor arc $AD$ of $\omega$ such that $MQ$ is tangent to $\omega$. $QB$ meets $\omega$ again at $R$, and the line through $R$ perpendicular to $BC$ meets $PQ$ at $S$. Prove $SD$ is tangent to the circumcircle of $\triangle QDM$. [i]Proposed by Ray Li[/i]

2020 Greece JBMO TST, 1

Let $ABC$ be a triangle with $AB>AC$. Let $D$ be a point on side $AB$ such that $BD=AC$. Consider the circle $\gamma$ passing through point $D$ and tangent to side $AC$ at point $A$. Consider the circumscribed circle $\omega$ of the triangle $ABC$ that interesects the circle $\gamma$ at points $A$ and $E$. Prove that point $E$ is the intersection point of the perpendicular bisectors of line segments $BC$ and $AD$.

2018 Thailand TSTST, 6

In a right-angled triangle $ABC$ ($\angle A = 90^o$), the perpendicular bisector of $BC$ intersects the line $AC$ in $K$ and the perpendicular bisector of $BK$ intersects the line $AB$ in $L$. If the line $CL$ be the internal bisector of angle $C$, find all possible values for angles $B$ and $C$. by Mahdi Etesami Fard

2011 All-Russian Olympiad Regional Round, 9.6

Initially, there are three different points on the plane. Every minute, three points are chosen, for example $A$, $B$ and $C$, and a new point $D$ is generated which is symmetric to $A$ with respect to the perpendicular bisector of line segment $BC$. 24 hours later, it turns out that among all the points that were generated, there exist three collinear points. Prove that the three initial points were also collinear. (Author: V. Shmarov)

2012 Kazakhstan National Olympiad, 2

Let $ABCD$ be an inscribed quadrilateral, in which $\angle BAD<90$. On the rays $AB$ and $AD$ are selected points $K$ and $L$, respectively, such that$ KA = KD, LA = LB$. Let $N$ - the midpoint of $AC$.Prove that if $\angle BNC=\angle DNC $,so $\angle KNL=\angle BCD $

2014 IMAR Test, 1

Let $ABC$ be a triangle and let $M$ be the midpoint of the side $BC$ . The circle with radius $MA$ centered in $M$ meets the lines $AB$ and $AC$ again at $B^{'}$ and $C^{'}$, respectively , and the tangents to this circle at $B^{'}$ and $C^{'}$ meet at $D$ . Show that the perpendicular bisector of the segment $BC$ bisects the segment $AD$.

2003 AMC 10, 17

The number of inches in the perimeter of an equilateral triangle equals the number of square inches in the area of its circumscribed circle. What is the radius, in inches, of the circle? $ \textbf{(A)}\ \frac{3\sqrt2}{\pi} \qquad \textbf{(B)}\ \frac{3\sqrt3}{\pi} \qquad \textbf{(C)}\ \sqrt3 \qquad \textbf{(D)}\ \frac{6}{\pi} \qquad \textbf{(E)}\ \sqrt3\pi$