Found problems: 200
2011 Tournament of Towns, 4
There are $n$ red sticks and $n$ blue sticks. The sticks of each colour have the same total length, and can be used to construct an $n$-gon. We wish to repaint one stick of each colour in the other colour so that the sticks of each colour can still be used to construct an $n$-gon. Is this always possible if
(a) $n = 3$,
(b) $n > 3$ ?
1989 IMO Longlists, 16
Show that any two points lying inside a regular $ n\minus{}$gon $ E$ can be joined by two circular arcs lying inside $ E$ and meeting at an angle of at least $ \left(1 \minus{} \frac{2}{n} \right) \cdot \pi.$
1969 IMO Shortlist, 52
Prove that a regular polygon with an odd number of edges cannot be partitioned into four pieces with equal areas by two lines that pass through the center of polygon.
2011 Peru IMO TST, 2
Let $A_1A_2 \ldots A_n$ be a convex polygon. Point $P$ inside this polygon is chosen so that its projections $P_1, \ldots , P_n$ onto lines $A_1A_2, \ldots , A_nA_1$ respectively lie on the sides of the polygon. Prove that for arbitrary points $X_1, \ldots , X_n$ on sides $A_1A_2, \ldots , A_nA_1$ respectively,
\[\max \left\{ \frac{X_1X_2}{P_1P_2}, \ldots, \frac{X_nX_1}{P_nP_1} \right\} \geq 1.\]
[i]Proposed by Nairi Sedrakyan, Armenia[/i]
2017 Korea National Olympiad, problem 1
Denote $U$ as the set of $20$ diagonals of the regular polygon $P_1P_2P_3P_4P_5P_6P_7P_8$.
Find the number of sets $S$ which satisfies the following conditions.
1. $S$ is a subset of $U$.
2. If $P_iP_j \in S$ and $P_j P_k \in S$, and $i \neq k$, $P_iP_k \in S$.
2008 Germany Team Selection Test, 3
Given is a convex polygon $ P$ with $ n$ vertices. Triangle whose vertices lie on vertices of $ P$ is called [i]good [/i] if all its sides are unit length. Prove that there are at most $ \frac {2n}{3}$ [i]good[/i] triangles.
[i]Author: Vyacheslav Yasinskiy, Ukraine[/i]
2003 IMO Shortlist, 3
Let $n \geq 5$ be a given integer. Determine the greatest integer $k$ for which there exists a polygon with $n$ vertices (convex or not, with non-selfintersecting boundary) having $k$ internal right angles.
[i]Proposed by Juozas Juvencijus Macys, Lithuania[/i]
2021/2022 Tournament of Towns, P4
A convex $n{}$-gon with $n > 4$ is such that if a diagonal cuts a triangle from it then this triangle is isosceles. Prove that there are at least 2 equal sides among any 4 sides of the $n{}$-gon.
[i]Maxim Didin[/i]
1982 IMO Longlists, 55
Let $S$ be a square with sides length $100$. Let $L$ be a path within $S$ which does not meet itself and which is composed of line segments $A_0A_1,A_1A_2,A_2A_3,\ldots,A_{n-1}A_n$ with $A_0=A_n$. Suppose that for every point $P$ on the boundary of $S$ there is a point of $L$ at a distance from $P$ no greater than $\frac {1} {2}$. Prove that there are two points $X$ and $Y$ of $L$ such that the distance between $X$ and $Y$ is not greater than $1$ and the length of the part of $L$ which lies between $X$ and $Y$ is not smaller than $198$.
2009 BAMO, 4
Seven congruent line segments are connected together at their endpoints as shown in the figure below at the left. By raising point $E$ the linkage can be made taller, as shown in the figure below and to the right.
Continuing to raise $E$ in this manner, it is possible to use the linkage to make $A, C, F$, and $E$ collinear, while simultaneously making $B, G, D$, and $E$ collinear, thereby constructing a new triangle $ABE$.
Prove that a regular polygon with center $E$ can be formed from a number of copies of this new triangle $ABE$, joined together at point $E$, and without overlapping interiors. Also find the number of sides of this polygon and justify your answer.
[img]https://cdn.artofproblemsolving.com/attachments/2/6/b3826b7ba7ea49642477878a03ac590281df43.png[/img]
2006 Tournament of Towns, 5
A square is dissected into $n$ congruent non-convex polygons whose sides are parallel to the sides of the square, and no two of these polygons are parallel translates of each other. What is the maximum value of $n$? (4)
Ukrainian TYM Qualifying - geometry, 2015.22
Let $A_1A_2... A_{2n + 1}$ be a convex polygon, $a_1 = A_1A_2$, $a_2 = A_2A_3$, $...$, $a_{2n} = A_{2n}A_{2n + 1}$, $a_{2n + 1} = A_{2n + 1}A_1$. Denote by: $\alpha_i = \angle A_i$, $1 \le i \le 2n + 1$, $\alpha_{k + 2n + 1} = \alpha_k$, $k \ge 1$, $ \beta_i = \alpha_{i + 2} + \alpha_{i + 4} +... + \alpha_{i + 2n}$, $1 \le i \le 2n + 1$. Prove what if
$$\frac{\alpha_1}{\sin \beta_1}=\frac{\alpha_2}{\sin \beta_2}=...=\frac{\alpha_{2n+1}}{\sin \beta_{2n+1}}$$
then a circle can be circumscribed around this polygon.
Does the inverse statement hold a place?
1968 IMO Shortlist, 5
Let $h_n$ be the apothem (distance from the center to one of the sides) of a regular $n$-gon ($n \geq 3$) inscribed in a circle of radius $r$. Prove the inequality
\[(n + 1)h_n+1 - nh_n > r.\]
Also prove that if $r$ on the right side is replaced with a greater number, the inequality will not remain true for all $n \geq 3.$
1978 All Soviet Union Mathematical Olympiad, 261
Given a circle with radius $R$ and inscribed $n$-gon with area $S$. We mark one point on every side of the given polygon. Prove that the perimeter of the polygon with the vertices in the marked points is not less than $2S/R$.
1975 Bulgaria National Olympiad, Problem 2
Let $F$ be a polygon the boundary of which is a broken line with vertices in the knots (units) of a given in advance regular square network. If $k$ is the count of knots of the network situated over the boundary of $F$, and $\ell$ is the count of the knots of the network lying inside $F$, prove that if the surface of every square from the network is $1$, then the surface $S$ of $F$ is calculated with the formulae:
$$S=\frac k2+\ell-1$$
[i]V. Chukanov[/i]
2004 Germany Team Selection Test, 2
Let $n \geq 5$ be a given integer. Determine the greatest integer $k$ for which there exists a polygon with $n$ vertices (convex or not, with non-selfintersecting boundary) having $k$ internal right angles.
[i]Proposed by Juozas Juvencijus Macys, Lithuania[/i]
1991 Chile National Olympiad, 2
If a polygon inscribed in a circle is equiangular and has an odd number of sides, prove that it is regular.
2013 Saudi Arabia GMO TST, 2
Find all values of $n$ for which there exists a convex cyclic non-regular polygon with $n$ vertices such that the measures of all its internal angles are equal.
Novosibirsk Oral Geo Oly IX, 2023.5
A circle of length $10$ is inscribed in a convex polygon with perimeter $15$. What part of the area of this polygon is occupied by the resulting circle?
2012 Czech-Polish-Slovak Junior Match, 4
Prove that among any $51$ vertices of the $101$-regular polygon there are three that are the vertices of an isosceles triangle.
1989 All Soviet Union Mathematical Olympiad, 502
Show that for each integer $n > 0$, there is a polygon with vertices at lattice points and all sides parallel to the axes, which can be dissected into $1 \times 2$ (and / or $2 \times 1$) rectangles in exactly $n$ ways.
1970 IMO Longlists, 8
Consider a regular $2n$-gon and the $n$ diagonals of it that pass through its center. Let $P$ be a point of the inscribed circle and let $a_1, a_2, \ldots , a_n$ be the angles in which the diagonals mentioned are visible from the point $P$. Prove that
\[\sum_{i=1}^n \tan^2 a_i = 2n \frac{\cos^2 \frac{\pi}{2n}}{\sin^4 \frac{\pi}{2n}}.\]
2008 Brazil Team Selection Test, 4
Given is a convex polygon $ P$ with $ n$ vertices. Triangle whose vertices lie on vertices of $ P$ is called [i]good [/i] if all its sides are unit length. Prove that there are at most $ \frac {2n}{3}$ [i]good[/i] triangles.
[i]Author: Vyacheslav Yasinskiy, Ukraine[/i]
Estonia Open Senior - geometry, 2019.1.5
Polygon $A_0A_1...A_{n-1}$ satisfies the following:
$\bullet$ $A_0A_1 \le A_1A_2 \le ...\le A_{n-1}A_0$ and
$\bullet$ $\angle A_0A_1A_2 = \angle A_1A_2A_3 = ... = \angle A_{n-2}A_{n-1}A_0$ (all angles are internal angles).
Prove that this polygon is regular.
2010 Oral Moscow Geometry Olympiad, 1
Convex $n$-gon $P$, where $n> 3$, is cut into equal triangles by diagonals that do not intersect inside it. What are the possible values of $n$ if the $n$-gon is cyclic?