This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2015 Tuymaada Olympiad, 3

$P(x,y)$ is polynomial with real coefficients and $P(x+2y,x+y)=P(x,y)$. Prove that exists polynomial $Q(t)$ such that $P(x,y)=Q((x^2-2y^2)^2)$ [i]A. Golovanov[/i]

1940 Putnam, A1

Prove that if $f(x)$ is a polynomial with integer coefficients and there exists an integer $k$ such that none of $f(1),\ldots,f(k)$ is divisible by $k$, then $f(x)$ has no integral root.

2012 Pre-Preparation Course Examination, 5

Suppose that for the linear transformation $T:V \longrightarrow V$ where $V$ is a vector space, there is no trivial subspace $W\subset V$ such that $T(W)\subseteq W$. Prove that for every polynomial $p(x)$, the transformation $p(T)$ is invertible or zero.

1993 Kurschak Competition, 3

Let $n$ be a fixed positive integer. Compute over $\mathbb{R}$ the minimum of the following polynomial: \[f(x)=\sum_{t=0}^{2n}(2n+1-t)x^t.\]

2015 Harvard-MIT Mathematics Tournament, 8

Find the number of ordered pairs of integers $(a,b)\in\{1,2,\ldots,35\}^2$ (not necessarily distinct) such that $ax+b$ is a "quadratic residue modulo $x^2+1$ and $35$", i.e. there exists a polynomial $f(x)$ with integer coefficients such that either of the following $\textit{equivalent}$ conditions holds: [list] [*] there exist polynomials $P$, $Q$ with integer coefficients such that $f(x)^2-(ax+b)=(x^2+1)P(x)+35Q(x)$; [*] or more conceptually, the remainder when (the polynomial) $f(x)^2-(ax+b)$ is divided by (the polynomial) $x^2+1$ is a polynomial with integer coefficients all divisible by $35$. [/list]

2002 National Olympiad First Round, 13

Let $ABCD$ be a trapezoid such that $AB \parallel CD$, $|BC|+|AD| = 7$, $|AB| = 9$ and $|BC| = 14$. What is the ratio of the area of the triangle formed by $CD$, angle bisector of $\widehat{BCD}$ and angle bisector of $\widehat{CDA}$ over the area of the trapezoid? $ \textbf{a)}\ \dfrac{9}{14} \qquad\textbf{b)}\ \dfrac{5}{7} \qquad\textbf{c)}\ \sqrt 2 \qquad\textbf{d)}\ \dfrac{49}{69} \qquad\textbf{e)}\ \dfrac 13 $

2013 Iran MO (3rd Round), 7

An equation $P(x)=Q(y)$ is called [b]Interesting[/b] if $P$ and $Q$ are polynomials with degree at least one and integer coefficients and the equations has an infinite number of answers in $\mathbb{N}$. An interesting equation $P(x)=Q(y)$ [b]yields in[/b] interesting equation $F(x)=G(y)$ if there exists polynomial $R(x) \in \mathbb{Q} [x]$ such that $F(x) \equiv R(P(x))$ and $G(x) \equiv R(Q(x))$. (a) Suppose that $S$ is an infinite subset of $\mathbb{N} \times \mathbb{N}$.$S$ [i]is an answer[/i] of interesting equation $P(x)=Q(y)$ if each element of $S$ is an answer of this equation. Prove that for each $S$ there's an interesting equation $P_0(x)=Q_0(y)$ such that if there exists any interesting equation that $S$ is an answer of it, $P_0(x)=Q_0(y)$ yields in that equation. (b) Define the degree of an interesting equation $P(x)=Q(y)$ by $max\{deg(P),deg(Q)\}$. An interesting equation is called [b]primary[/b] if there's no other interesting equation with lower degree that yields in it. Prove that if $P(x)=Q(y)$ is a primary interesting equation and $P$ and $Q$ are monic then $(deg(P),deg(Q))=1$. Time allowed for this question was 2 hours.

2016 Irish Math Olympiad, 3

Tags: root , sum , algebra , polynomial
Do there exist four polynomials $P_1(x), P_2(x), P_3(x), P_4(x)$ with real coefficients, such that the sum of any three of them always has a real root, but the sum of any two of them has no real root?

PEN H Problems, 35

Find all cubic polynomials $x^3 +ax^2 +bx+c$ admitting the rational numbers $a$, $b$ and $c$ as roots.

2010 Contests, 4

Let $p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ be a monic polynomial of degree $n>2$, with real coefficients and all its roots real and different from zero. Prove that for all $k=0,1,2,\cdots,n-2$, at least one of the coefficients $a_k,a_{k+1}$ is different from zero.

2002 Federal Competition For Advanced Students, Part 2, 1

Find all polynomials $P(x)$ of the smallest possible degree with the following properties: (i) The leading coefficient is $200$; (ii) The coefficient at the smallest non-vanishing power is $2$; (iii) The sum of all the coefficients is $4$; (iv) $P(-1) = 0, P(2) = 6, P(3) = 8$.

2017 CHMMC (Fall), 1

Let $a, b$ be the roots of the quadratic polynomial $Q(x) = x^2 + x + 1$, and let $u, v$ be the roots of the quadratic polynomial $R(x) = 2x^2 + 7x + 1$. Suppose $P$ is a cubic polynomial which satis es the equations $$\begin{cases} P(au) = Q(u)R(a) \\ P(bu) = Q(u)R(b) \\ P(av) = Q(v)R(a) \\ P(bv) = Q(v)R(b) \end{cases}$$ If $M$ and$ N$ are the coeffcients of $x^2$ and $x$ respectively in $P(x)$, what is the value of $M+ N$?

MathLinks Contest 7th, 1.2

Let $ a,b,c,d$ be four distinct positive integers in arithmetic progression. Prove that $ abcd$ is not a perfect square.

1983 IMO Shortlist, 9

Let $ a$, $ b$ and $ c$ be the lengths of the sides of a triangle. Prove that \[ a^{2}b(a \minus{} b) \plus{} b^{2}c(b \minus{} c) \plus{} c^{2}a(c \minus{} a)\ge 0. \] Determine when equality occurs.

2012 Germany Team Selection Test, 1

Consider a polynomial $P(x) = \prod^9_{j=1}(x+d_j),$ where $d_1, d_2, \ldots d_9$ are nine distinct integers. Prove that there exists an integer $N,$ such that for all integers $x \geq N$ the number $P(x)$ is divisible by a prime number greater than 20. [i]Proposed by Luxembourg[/i]

2012 International Zhautykov Olympiad, 3

Let $P, Q,R$ be three polynomials with real coefficients such that \[P(Q(x)) + P(R(x))=\text{constant}\] for all $x$. Prove that $P(x)=\text{constant}$ or $Q(x)+R(x)=\text{constant}$ for all $x$.

2012 ELMO Shortlist, 3

Prove that any polynomial of the form $1+a_nx^n + a_{n+1}x^{n+1} + \cdots + a_kx^k$ ($k\ge n$) has at least $n-2$ non-real roots (counting multiplicity), where the $a_i$ ($n\le i\le k$) are real and $a_k\ne 0$. [i]David Yang.[/i]

2014 ELMO Shortlist, 3

Let $t$ and $n$ be fixed integers each at least $2$. Find the largest positive integer $m$ for which there exists a polynomial $P$, of degree $n$ and with rational coefficients, such that the following property holds: exactly one of \[ \frac{P(k)}{t^k} \text{ and } \frac{P(k)}{t^{k+1}} \] is an integer for each $k = 0,1, ..., m$. [i]Proposed by Michael Kural[/i]

1990 Iran MO (2nd round), 2

Let $\alpha$ be a root of the equation $x^3-5x+3=0$ and let $f(x)$ be a polynomial with rational coefficients. Prove that if $f(\alpha)$ be the root of equation above, then $f(f(\alpha))$ is a root, too.

2008 Indonesia TST, 1

A polynomial $P(x) = 1 + x^2 + x^5 + x^{n_1} + ...+ x^{n_s} + x^{2008}$ with $n_1, ..., n_s$ are positive integers and $5 < n_1 < ... <n_s < 2008$ are given. Prove that if $P(x)$ has at least a real root, then the root is not greater than $\frac{1-\sqrt5}{2}$

1987 IMO, 3

Let $n\ge2$ be an integer. Prove that if $k^2+k+n$ is prime for all integers $k$ such that $0\le k\le\sqrt{n\over3}$, then $k^2+k+n$ is prime for all integers $k$ such that $0\le k\le n-2$.

2017 AIME Problems, 8

Find the number of positive integers $n$ less than $2017$ such that \[ 1+n+\frac{n^2}{2!}+\frac{n^3}{3!}+\frac{n^4}{4!}+\frac{n^5}{5!}+\frac{n^6}{6!} \] is an integer.

2008 Hanoi Open Mathematics Competitions, 6

Let $P(x)$ be a polynomial such that $P(x^2 - 1) = x^4 - 3x^2 + 3$. Find $P(x^2 + 1)$.

2012 Indonesia TST, 1

Let $P$ be a polynomial with real coefficients. Find all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ such that there exists a real number $t$ such that \[f(x+t) - f(x) = P(x)\] for all $x \in \mathbb{R}$.

2008 Iran MO (3rd Round), 3

Let $ (b_0,b_1,b_2,b_3)$ be a permutation of the set $ \{54,72,36,108\}$. Prove that $ x^5\plus{}b_3x^3\plus{}b_2x^2\plus{}b_1x\plus{}b_0$ is irreducible in $ \mathbb Z[x]$.