This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2005 Postal Coaching, 19

Find all functions $f : \mathbb{R} \mapsto \mathbb{R}$ such that $f(xy+f(x)) = xf(y) +f(x)$ for all $x,y \in \mathbb{R}$.

2024 Switzerland Team Selection Test, 3

Determine all monic polynomial with integer coefficient $P$ such that for every integer $a,b$ there exists integer $c$ so that \[P(a)P(b)=P(c)\]

2007 Indonesia TST, 3

Find all pairs of function $ f: \mathbb{N} \rightarrow \mathbb{N}$ and polynomial with integer coefficients $ p$ such that: (i) $ p(mn) \equal{} p(m)p(n)$ for all positive integers $ m,n > 1$ with $ \gcd(m,n) \equal{} 1$, and (ii) $ \sum_{d|n}f(d) \equal{} p(n)$ for all positive integers $ n$.

1991 Arnold's Trivium, 45

Find the self-intersection index of the surface $x^4+y^4=1$ in the projective plane $\text{CP}^2$.

1992 IMO Shortlist, 19

Let $ f(x) \equal{} x^8 \plus{} 4x^6 \plus{} 2x^4 \plus{} 28x^2 \plus{} 1.$ Let $ p > 3$ be a prime and suppose there exists an integer $ z$ such that $ p$ divides $ f(z).$ Prove that there exist integers $ z_1, z_2, \ldots, z_8$ such that if \[ g(x) \equal{} (x \minus{} z_1)(x \minus{} z_2) \cdot \ldots \cdot (x \minus{} z_8),\] then all coefficients of $ f(x) \minus{} g(x)$ are divisible by $ p.$

1978 IMO Longlists, 14

Let $p(x, y)$ and $q(x, y)$ be polynomials in two variables such that for $x \ge 0, y \ge 0$ the following conditions hold: $(i) p(x, y)$ and $q(x, y)$ are increasing functions of $x$ for every fixed $y$. $(ii) p(x, y)$ is an increasing and $q(x)$ is a decreasing function of $y$ for every fixed $x$. $(iii) p(x, 0) = q(x, 0)$ for every $x$ and $p(0, 0) = 0$. Show that the simultaneous equations $p(x, y) = a, q(x, y) = b$ have a unique solution in the set $x \ge 0, y \ge 0$ for all $a, b$ satisfying $0 \le b \le a$ but lack a solution in the same set if $a < b$.

2013 Iran MO (3rd Round), 3

Real function $f$ [b]generates[/b] real function $g$ if there exists a natural $k$ such that $f^k=g$ and we show this by $f \rightarrow g$. In this question we are trying to find some properties for relation $\rightarrow$, for example it's trivial that if $f \rightarrow g$ and $g \rightarrow h$ then $f \rightarrow h$.(transitivity) (a) Give an example of two real functions $f,g$ such that $f\not = g$ ,$f\rightarrow g$ and $g\rightarrow f$. (b) Prove that for each real function $f$ there exists a finite number of real functions $g$ such that $f \rightarrow g$ and $g \rightarrow f$. (c) Does there exist a real function $g$ such that no function generates it, except for $g$ itself? (d) Does there exist a real function which generates both $x^3$ and $x^5$? (e) Prove that if a function generates two polynomials of degree 1 $P,Q$ then there exists a polynomial $R$ of degree 1 which generates $P$ and $Q$. Time allowed for this problem was 75 minutes.

2010 USA Team Selection Test, 1

Let $P$ be a polynomial with integer coefficients such that $P(0)=0$ and \[\gcd(P(0), P(1), P(2), \ldots ) = 1.\] Show there are infinitely many $n$ such that \[\gcd(P(n)- P(0), P(n+1)-P(1), P(n+2)-P(2), \ldots) = n.\]

2015 Iran Team Selection Test, 1

Find all polynomials $P,Q\in \Bbb{Q}\left [ x \right ]$ such that $$P(x)^3+Q(x)^3=x^{12}+1.$$

2008 Stars Of Mathematics, 1

Let $ P(x) \in \mathbb{Z}[x]$ be a polynomial of degree $ \text{deg} P \equal{} n > 1$. Determine the largest number of consecutive integers to be found in $ P(\mathbb{Z})$. [i]B. Berceanu[/i]

1979 IMO Longlists, 72

Let $f (x)$ be a polynomial with integer coefficients. Prove that if $f (x)= 1979$ for four different integer values of $x$, then $f (x)$ cannot be equal to $2\times 1979$ for any integral value of $x$.

2002 India IMO Training Camp, 12

Let $a,b$ be integers with $0<a<b$. A set $\{x,y,z\}$ of non-negative integers is [i]olympic[/i] if $x<y<z$ and if $\{z-y,y-x\}=\{a,b\}$. Show that the set of all non-negative integers is the union of pairwise disjoint olympic sets.

2017 Iran Team Selection Test, 4

A $n+1$-tuple $\left(h_1,h_2, \cdots, h_{n+1}\right)$ where $h_i\left(x_1,x_2, \cdots , x_n\right)$ are $n$ variable polynomials with real coefficients is called [i]good[/i] if the following condition holds: For any $n$ functions $f_1,f_2, \cdots ,f_n : \mathbb R \to \mathbb R$ if for all $1 \le i \le n+1$, $P_i(x)=h_i \left(f_1(x),f_2(x), \cdots, f_n(x) \right)$ is a polynomial with variable $x$, then $f_1(x),f_2(x), \cdots, f_n(x)$ are polynomials. $a)$ Prove that for all positive integers $n$, there exists a [i]good[/i] $n+1$-tuple $\left(h_1,h_2, \cdots, h_{n+1}\right)$ such that the degree of all $h_i$ is more than $1$. $b)$ Prove that there doesn't exist any integer $n>1$ that for which there is a [i]good[/i] $n+1$-tuple $\left(h_1,h_2, \cdots, h_{n+1}\right)$ such that all $h_i$ are symmetric polynomials. [i]Proposed by Alireza Shavali[/i]

1995 Taiwan National Olympiad, 1

Let $P(x)=a_{0}+a_{1}x+...+a_{n}x^{n}\in\mathbb{C}[x]$ , where $a_{n}=1$. The roots of $P(x)$ are $b_{1},b_{2},...,b_{n}$, where $|b_{1}|,|b_{2}|,...,|b_{j}|>1$ and $|b_{j+1}|,...,|b_{n}|\leq 1$. Prove that $\prod_{i=1}^{j}|b_{i}|\leq\sqrt{|a_{0}|^{2}+|a_{1}|^{2}+...+|a_{n}|^{2}}$.

2012 Romania Team Selection Test, 1

Find all triples $(a,b,c)$ of positive integers with the following property: for every prime $p$, if $n$ is a quadratic residue $\mod p$, then $an^2+bn+c$ is a quadratic residue $\mod p$.

1999 National Olympiad First Round, 8

If the polynomial $ P\left(x\right)$ satisfies $ 2P\left(x\right) \equal{} P\left(x \plus{} 3\right) \plus{} P\left(x \minus{} 3\right)$ for every real number $ x$, degree of $ P\left(x\right)$ will be at most $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \text{None}$

2003 China Team Selection Test, 3

The $ n$ roots of a complex coefficient polynomial $ f(z) \equal{} z^n \plus{} a_1z^{n \minus{} 1} \plus{} \cdots \plus{} a_{n \minus{} 1}z \plus{} a_n$ are $ z_1, z_2, \cdots, z_n$. If $ \sum_{k \equal{} 1}^n |a_k|^2 \leq 1$, then prove that $ \sum_{k \equal{} 1}^n |z_k|^2 \leq n$.

2010 Germany Team Selection Test, 3

A positive integer $N$ is called [i]balanced[/i], if $N=1$ or if $N$ can be written as a product of an even number of not necessarily distinct primes. Given positive integers $a$ and $b$, consider the polynomial $P$ defined by $P(x)=(x+a)(x+b)$. (a) Prove that there exist distinct positive integers $a$ and $b$ such that all the number $P(1)$, $P(2)$,$\ldots$, $P(50)$ are balanced. (b) Prove that if $P(n)$ is balanced for all positive integers $n$, then $a=b$. [i]Proposed by Jorge Tipe, Peru[/i]

2011 IMC, 5

Let $n$ be a positive integer and let $V$ be a $(2n-1)$-dimensional vector space over the two-element field. Prove that for arbitrary vectors $v_1,\dots,v_{4n-1} \in V,$ there exists a sequence $1\leq i_1<\dots<i_{2n}\leq 4n-1$ of indices such that $v_{i_1}+\dots+v_{i_{2n}}=0.$

2006 China Team Selection Test, 1

Let $k$ be an odd number that is greater than or equal to $3$. Prove that there exists a $k^{th}$-degree integer-valued polynomial with non-integer-coefficients that has the following properties: (1) $f(0)=0$ and $f(1)=1$; and. (2) There exist infinitely many positive integers $n$ so that if the following equation: \[ n= f(x_1)+\cdots+f(x_s), \] has integer solutions $x_1, x_2, \dots, x_s$, then $s \geq 2^k-1$.

2016 CMIMC, 10

Denote by $F_0(x)$, $F_1(x)$, $\ldots$ the sequence of Fibonacci polynomials, which satisfy the recurrence $F_0(x)=1$, $F_1(x)=x$, and $F_n(x)=xF_{n-1}(x)+F_{n-2}(x)$ for all $n\geq 2$. It is given that there exist unique integers $\lambda_0$, $\lambda_1$, $\ldots$, $\lambda_{1000}$ such that \[x^{1000}=\sum_{i=0}^{1000}\lambda_iF_i(x)\] for all real $x$. For which integer $k$ is $|\lambda_k|$ maximized?

2016 Romanian Master of Mathematics Shortlist, A2

Let $p > 3$ be a prime number, and let $F_p$ denote the (fi nite) set of residue classes modulo $p$. Let $S_d$ denote the set of $2$-variable polynomials $P(x, y)$ with coefficients in $F_p$, total degree $\le d$, and satisfying $P(x, y) = P(y,- x -y)$. Show that $$|S_d| = p^{\lceil (d+1)(d+2)/6 \rceil}$$. [i]The total degree of a $2$-variable polynomial $P(x, y)$ is the largest value of $i + j$ among monomials $x^iy^j$ [/i] appearing in $P$.

1994 Greece National Olympiad, 2

Fow which real values of $m$ does the polynomial $x^3+1995x^2-1994x+m$ have all three roots integers?

2006 Korea National Olympiad, 1

Given that for reals $a_1,\cdots, a_{2004},$ equation $x^{2006}-2006x^{2005}+a_{2004}x^{2004}+\cdots +a_2x^2+a_1x+1=0$ has $2006$ positive real solution, find the maximum possible value of $a_1.$

2006 District Olympiad, 1

Let $x>0$ be a real number and $A$ a square $2\times 2$ matrix with real entries such that $\det {(A^2+xI_2 )} = 0$. Prove that $\det{ (A^2+A+xI_2) } = x$.