Found problems: 3597
2016 Nigerian Senior MO Round 2, Problem 8
If $a, b, c, d$ are the solutions of the equation $x^4-kx-15=0$, find the equation whose solutions are $\frac{a+b+c}{d^2}, \frac{a+b+d}{c^2}, \frac{a+c+d}{b^2}, \frac{b+c+d}{a^2}$.
2013 Turkey Junior National Olympiad, 1
Let $x, y, z$ be real numbers satisfying $x+y+z=0$ and $x^2+y^2+z^2=6$. Find the maximum value of
\[ |(x-y)(y-z)(z-x) | \]
2019 Estonia Team Selection Test, 4
Let us call a real number $r$ [i]interesting[/i], if $r = a + b\sqrt2$ for some integers a and b. Let $A(x)$ and $B(x)$ be polynomial functions with interesting coefficients for which the constant term of $B(x)$ is $1$, and $Q(x)$ be a polynomial function with real coefficients such that $A(x) = B(x) \cdot Q(x)$. Prove that the coefficients of $Q(x)$ are interesting.
2009 Vietnam National Olympiad, 4
Let $ a$, $ b$, $ c$ be three real numbers. For each positive integer number $ n$, $ a^n \plus{} b^n \plus{} c^n$ is an integer number. Prove that there exist three integers $ p$, $ q$, $ r$ such that $ a$, $ b$, $ c$ are the roots of the equation $ x^3 \plus{} px^2 \plus{} qx \plus{} r \equal{} 0$.
2017 China Team Selection Test, 6
For a given positive integer $n$ and prime number $p$, find the minimum value of positive integer $m$ that satisfies the following property: for any polynomial $$f(x)=(x+a_1)(x+a_2)\ldots(x+a_n)$$ ($a_1,a_2,\ldots,a_n$ are positive integers), and for any non-negative integer $k$, there exists a non-negative integer $k'$ such that $$v_p(f(k))<v_p(f(k'))\leq v_p(f(k))+m.$$ Note: for non-zero integer $N$,$v_p(N)$ is the largest non-zero integer $t$ that satisfies $p^t\mid N$.
2024 China Team Selection Test, 23
$P(z)=a_nz^n+\dots+a_1z+z_0$, with $a_n\neq 0$ is a polynomial with complex coefficients, such that when $|z|=1$, $|P(z)|\leq 1$. Prove that for any $0\leq k\leq n-1$, $|a_k|\leq 1-|a_n|^2$.
[i]Proposed by Yijun Yao[/i]
2021 Chile National Olympiad, 3
Find all polynomials $p(x)$ with real coefficients that satisfy $$4p(x^2) = 4(p(x))^2 + 4p(x)- 1$$
1993 IMO, 6
Let $n > 1$ be an integer. In a circular arrangement of $n$ lamps $L_0, \ldots, L_{n-1},$ each of of which can either ON or OFF, we start with the situation where all lamps are ON, and then carry out a sequence of steps, $Step_0, Step_1, \ldots .$ If $L_{j-1}$ ($j$ is taken mod $n$) is ON then $Step_j$ changes the state of $L_j$ (it goes from ON to OFF or from OFF to ON) but does not change the state of any of the other lamps. If $L_{j-1}$ is OFF then $Step_j$ does not change anything at all. Show that:
(i) There is a positive integer $M(n)$ such that after $M(n)$ steps all lamps are ON again,
(ii) If $n$ has the form $2^k$ then all the lamps are ON after $n^2-1$ steps,
(iii) If $n$ has the form $2^k + 1$ then all lamps are ON after $n^2 - n + 1$ steps.
1994 Baltic Way, 2
Let $a_1,a_2,\ldots ,a_9$ be any non-negative numbers such that $a_1=a_9=0$ and at least one of the numbers is non-zero. Prove that for some $i$, $2\le i\le 8$, the inequality $a_{i-1}+a_{i+1}<2a_i$ holds. Will the statement remain true if we change the number $2$ in the last inequality to $1.9$?
2007 Harvard-MIT Mathematics Tournament, 2
Determine the real number $a$ having the property that $f(a)=a$ is a relative minimum of $f(x)=x^4-x^3-x^2+ax+1$.
2010 Romania Team Selection Test, 2
(a) Given a positive integer $k$, prove that there do not exist two distinct integers in the open interval $(k^2, (k + 1)^2)$ whose product is a perfect square.
(b) Given an integer $n > 2$, prove that there exist $n$ distinct integers in the open interval $(k^n, (k + 1)^n)$ whose product is the $n$-th power of an integer, for all but a finite number of positive integers $k$.
[i]AMM Magazine[/i]
1985 AMC 12/AHSME, 30
Let $ \lfloor x \rfloor$ be the greatest integer less than or equal to $ x$. Then the number of real solutions to $ 4x^2 \minus{} 40 \lfloor x \rfloor \plus{} 51 \equal{} 0$ is
$ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 4$
1998 Slovenia National Olympiad, Problem 2
Find all polynomials $p$ with real coefficients such that for all real $x$
$$(x-8)p(2x)=8(x-1)p(x).$$
2006 IMC, 6
Find all sequences $a_{0}, a_{1},\ldots, a_{n}$ of real numbers such that $a_{n}\neq 0$, for which the following statement is true:
If $f: \mathbb{R}\to\mathbb{R}$ is an $n$ times differentiable function
and $x_{0}<x_{1}<\ldots <x_{n}$ are real numbers such that
$f(x_{0})=f(x_{1})=\ldots =f(x_{n})=0$ then there is $h\in (x_{0}, x_{n})$ for which \[a_{0}f(h)+a_{1}f'(h)+\ldots+a_{n}f^{(n)}(h)=0.\]
1988 Tournament Of Towns, (180) 3
It is known that $1$ and $2$ are roots of a polynomial with integer coefficients. Prove that the polynomial has a coefficient with value less than $-1$ .
1951 Miklós Schweitzer, 2
Denote by $ \mathcal{H}$ a set of sequences $ S\equal{}\{s_n\}_{n\equal{}1}^{\infty}$ of real numbers having the following properties:
(i) If $ S\equal{}\{s_n\}_{n\equal{}1}^{\infty}\in \mathcal{H}$, then $ S'\equal{}\{s_n\}_{n\equal{}2}^{\infty}\in \mathcal{H}$;
(ii) If $ S\equal{}\{s_n\}_{n\equal{}1}^{\infty}\in \mathcal{H}$ and $ T\equal{}\{t_n\}_{n\equal{}1}^{\infty}$, then
$ S\plus{}T\equal{}\{s_n\plus{}t_n\}_{n\equal{}1}^{\infty}\in \mathcal{H}$ and $ ST\equal{}\{s_nt_n\}_{n\equal{}1}^{\infty}\in \mathcal{H}$;
(iii) $ \{\minus{}1,\minus{}1,\dots,\minus{}1,\dots\}\in \mathcal{H}$.
A real valued function $ f(S)$ defined on $ \mathcal{H}$ is called a quasi-limit of $ S$ if it has the following properties:
If $ S\equal{}{c,c,\dots,c,\dots}$, then $ f(S)\equal{}c$;
If $ s_i\geq 0$, then $ f(S)\geq 0$;
$ f(S\plus{}T)\equal{}f(S)\plus{}f(T)$;
$ f(ST)\equal{}f(S)f(T)$,
$ f(S')\equal{}f(S)$
Prove that for every $ S$, the quasi-limit $ f(S)$ is an accumulation point of $ S$.
2019 USEMO, 2
Let $\mathbb{Z}[x]$ denote the set of single-variable polynomials in $x$ with integer coefficients. Find all functions $\theta : \mathbb{Z}[x] \to \mathbb{Z}[x]$ (i.e. functions taking polynomials to polynomials)
such that
[list]
[*] for any polynomials $p, q \in \mathbb{Z}[x]$, $\theta(p + q) = \theta(p) + \theta(q)$;
[*] for any polynomial $p \in \mathbb{Z}[x]$, $p$ has an integer root if and only if $\theta(p)$ does.
[/list]
[i]Carl Schildkraut[/i]
1989 IMO Longlists, 12
Let $ P(x)$ be a polynomial such that the following inequalities are satisfied:
\[ P(0) > 0;\]\[ P(1) > P(0);\]\[ P(2) > 2P(1) \minus{} P(0);\]\[ P(3) > 3P(2) \minus{} 3P(1) \plus{} P(0);\]
and also for every natural number $ n,$ \[ P(n\plus{}4) > 4P(n\plus{}3) \minus{} 6P(n\plus{}2)\plus{}4P(n \plus{} 1) \minus{} P(n).\]
Prove that for every positive natural number $ n,$ $ P(n)$ is positive.
2021 Turkey MO (2nd round), 2
If a polynomial with real coefficients of degree $d$ has at least $d$ coefficients equal to $1$ and has $d$ real roots, what is the maximum possible value of $d$?
(Note: The roots of the polynomial do not have to be different from each other.)
2002 India IMO Training Camp, 17
Let $n$ be a positive integer and let $(1+iT)^n=f(T)+ig(T)$ where $i$ is the square root of $-1$, and $f$ and $g$ are polynomials with real coefficients. Show that for any real number $k$ the equation $f(T)+kg(T)=0$ has only real roots.
2006 Iran MO (3rd Round), 2
$n$ is a natural number that $\frac{x^{n}+1}{x+1}$ is irreducible over $\mathbb Z_{2}[x]$. Consider a vector in $\mathbb Z_{2}^{n}$ that it has odd number of $1$'s (as entries) and at least one of its entries are $0$. Prove that these vector and its translations are a basis for $\mathbb Z_{2}^{n}$
2000 Saint Petersburg Mathematical Olympiad, 9.3
Let $P(x)=x^{2000}-x^{1000}+1$. Do there exist distinct positive integers $a_1,\dots,a_{2001}$ such that $a_ia_j|P(a_i)P(a_j)$ for all $i\neq j$?
[I]Proposed by A. Baranov[/i]
2023 India IMO Training Camp, 3
For a positive integer $n$ we denote by $s(n)$ the sum of the digits of $n$. Let $P(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ be a polynomial, where $n \geqslant 2$ and $a_i$ is a positive integer for all $0 \leqslant i \leqslant n-1$. Could it be the case that, for all positive integers $k$, $s(k)$ and $s(P(k))$ have the same parity?
2020 CIIM, 4
For each polynomial $P(x)$ with real coefficients, define
$P_0=P(0)$ and $P_j(x)=x^j\cdot P^{(j)}(x)$
where $P^{(j)}$ denotes the $j$-th derivative of $P$ for $j\geq 1$.
Prove that there exists one unique sequence of real numbers $b_0, b_1, b_2, \dots$ such that for each polynomial $P(x)$ with real coefficients and for each $x$ real, we have
$P(x)=b_0P_0+\sum_{k\geq 1}b_kP_k(x)=b_0P_0+b_1P_1(x)+b_2P_2(x)+\dots$
1986 All Soviet Union Mathematical Olympiad, 439
Let us call a polynomial [i]admissible[/i] if all it's coefficients are $0, 1, 2$ or $3$. For given $n$ find the number of all the [i]admissible [/i] polynomials $P$ such, that $P(2) = n$.