This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2004 Kazakhstan National Olympiad, 5

Let $ P (x) $ be a polynomial with real coefficients such that $ P (x)> 0 $ for all $ x \geq 0 $. Prove that there is a positive integer $ n $ such that $ (1 + x) ^ n P (x) $ polynomial with nonnegative coefficients.

2025 Abelkonkurransen Finale, 4a

Find all polynomials \(P\) with real coefficients satisfying $$P(\frac{1}{1+x})=\frac{1}{1+P(x)}$$ for all real numbers \(x\neq -1\)

2020 Indonesia MO, 2

Problem 2. Let $P(x) = ax^2 + bx + c$ where $a, b, c$ are real numbers. If $$P(a) = bc, \hspace{0.5cm} P(b) = ac, \hspace{0.5cm} P(c) = ab$$ then prove that $$(a - b)(b - c)(c - a)(a + b + c) = 0.$$

1951 Miklós Schweitzer, 7

Let $ f(x)$ be a polynomial with the following properties: (i) $ f(0)\equal{}0$; (ii) $ \frac{f(a)\minus{}f(b)}{a\minus{}b}$ is an integer for any two different integers $ a$ and $ b$. Is there a polynomial which has these properties, although not all of its coefficients are integers?

2016 Saudi Arabia BMO TST, 1

Given two non-constant polynomials $P(x),Q(x)$ with real coefficients. For a real number $a$, we define $$P_a= \{z \in C : P(z) = a\}, Q_a =\{z \in C : Q(z) = a\}$$ Denote by $K$ the set of real numbers $a$ such that $P_a = Q_a$. Suppose that the set $K$ contains at least two elements, prove that $P(x) = Q(x)$.

2002 India IMO Training Camp, 12

Let $a,b$ be integers with $0<a<b$. A set $\{x,y,z\}$ of non-negative integers is [i]olympic[/i] if $x<y<z$ and if $\{z-y,y-x\}=\{a,b\}$. Show that the set of all non-negative integers is the union of pairwise disjoint olympic sets.

1969 IMO Shortlist, 14

$(CZS 3)$ Let $a$ and $b$ be two positive real numbers. If $x$ is a real solution of the equation $x^2 + px + q = 0$ with real coefficients $p$ and $q$ such that $|p| \le a, |q| \le b,$ prove that $|x| \le \frac{1}{2}(a +\sqrt{a^2 + 4b})$ Conversely, if $x$ satisfies the above inequality, prove that there exist real numbers $p$ and $q$ with $|p|\le a, |q|\le b$ such that $x$ is one of the roots of the equation $x^2+px+ q = 0.$

2007 ISI B.Math Entrance Exam, 3

For a natural number $n>1$ , consider the $n-1$ points on the unit circle $e^{\frac{2\pi ik}{n}}\ (k=1,2,...,n-1) $ . Show that the product of the distances of these points from $1$ is $n$.

1999 National Olympiad First Round, 34

For how many primes $ p$, there exits unique integers $ r$ and $ s$ such that for every integer $ x$ $ x^{3} \minus{} x \plus{} 2\equiv \left(x \minus{} r\right)^{2} \left(x \minus{} s\right)\pmod p$? $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \text{None}$

2011 Spain Mathematical Olympiad, 3

The sequence $S_0,S_1,S_2,\ldots$ is defined by[list][*]$S_n=1$ for $0\le n\le 2011$, and [*]$S_{n+2012}=S_{n+2011}+S_n$ for $n\ge 0$.[/list]Prove that $S_{2011a}-S_a$ is a multiple of $2011$ for all nonnegative integers $a$.

2021 India National Olympiad, 6

Let $\mathbb{R}[x]$ be the set of all polynomials with real coefficients. Find all functions $f: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ satisfying the following conditions: [list] [*] $f$ maps the zero polynomial to itself, [*] for any non-zero polynomial $P \in \mathbb{R}[x]$, $\text{deg} \, f(P) \le 1+ \text{deg} \, P$, and [*] for any two polynomials $P, Q \in \mathbb{R}[x]$, the polynomials $P-f(Q)$ and $Q-f(P)$ have the same set of real roots. [/list] [i]Proposed by Anant Mudgal, Sutanay Bhattacharya, Pulkit Sinha[/i]

1954 AMC 12/AHSME, 10

The sum of the numerical coefficients in the expansion of the binomial $ (a\plus{}b)^8$ is: $ \textbf{(A)}\ 32 \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 64 \qquad \textbf{(D)}\ 48 \qquad \textbf{(E)}\ 7$

2020 Brazil Team Selection Test, 2

We say that a set $S$ of integers is [i]rootiful[/i] if, for any positive integer $n$ and any $a_0, a_1, \cdots, a_n \in S$, all integer roots of the polynomial $a_0+a_1x+\cdots+a_nx^n$ are also in $S$. Find all rootiful sets of integers that contain all numbers of the form $2^a - 2^b$ for positive integers $a$ and $b$.

1980 IMO Shortlist, 5

In a rectangular coordinate system we call a horizontal line parallel to the $x$ -axis triangular if it intersects the curve with equation \[y = x^4 + px^3 + qx^2 + rx + s\] in the points $A,B,C$ and $D$ (from left to right) such that the segments $AB, AC$ and $AD$ are the sides of a triangle. Prove that the lines parallel to the $x$ - axis intersecting the curve in four distinct points are all triangular or none of them is triangular.

1999 Putnam, 2

Let $P(x)$ be a polynomial of degree $n$ such that $P(x)=Q(x)P^{\prime\prime}(x)$, where $Q(x)$ is a quadratic polynomial and $P^{\prime\prime}(x)$ is the second derivative of $P(x)$. Show that if $P(x)$ has at least two distinct roots then it must have $n$ distinct roots.

2012 Iran MO (3rd Round), 5

We call the three variable polynomial $P$ cyclic if $P(x,y,z)=P(y,z,x)$. Prove that cyclic three variable polynomials $P_1,P_2,P_3$ and $P_4$ exist such that for each cyclic three variable polynomial $P$, there exists a four variable polynomial $Q$ such that $P(x,y,z)=Q(P_1(x,y,z),P_2(x,y,z),P_3(x,y,z),P_4(x,y,z))$. [i]Solution by Mostafa Eynollahzade and Erfan Salavati[/i]

2009 China Team Selection Test, 2

Find all integers $ n\ge 2$ having the following property: for any $ k$ integers $ a_{1},a_{2},\cdots,a_{k}$ which aren't congruent to each other (modulo $ n$), there exists an integer polynomial $ f(x)$ such that congruence equation $ f(x)\equiv 0 (mod n)$ exactly has $ k$ roots $ x\equiv a_{1},a_{2},\cdots,a_{k} (mod n).$

2005 Putnam, B6

Let $S_n$ denote the set of all permutations of the numbers $1,2,\dots,n.$ For $\pi\in S_n,$ let $\sigma(\pi)=1$ if $\pi$ is an even permutation and $\sigma(\pi)=-1$ if $\pi$ is an odd permutation. Also, let $v(\pi)$ denote the number of fixed points of $\pi.$ Show that \[ \sum_{\pi\in S_n}\frac{\sigma(\pi)}{v(\pi)+1}=(-1)^{n+1}\frac{n}{n+1}. \]

2005 USA Team Selection Test, 3

We choose random a unitary polynomial of degree $n$ and coefficients in the set $1,2,...,n!$. Prove that the probability for this polynomial to be special is between $0.71$ and $0.75$, where a polynomial $g$ is called special if for every $k>1$ in the sequence $f(1), f(2), f(3),...$ there are infinitely many numbers relatively prime with $k$.

2002 Vietnam Team Selection Test, 2

Find all polynomials $P(x)$ with integer coefficients such that the polynomial \[ Q(x)=(x^2+6x+10) \cdot P^2(x)-1 \] is the square of a polynomial with integer coefficients.

1980 AMC 12/AHSME, 24

For some real number $r$, the polynomial $8x^3-4x^2-42x+45$ is divisible by $(x-r)^2$. Which of the following numbers is closest to $r$? $\text{(A)} \ 1.22 \qquad \text{(B)} \ 1.32 \qquad \text{(C)} \ 1.42 \qquad \text{(D)} \ 1.52 \qquad \text{(E)} \ 1.62$

2019 ISI Entrance Examination, 7

Let $f$ be a polynomial with integer coefficients. Define $$a_1 = f(0)~,~a_2 = f(a_1) = f(f(0))~,$$ and $~a_n = f(a_{n-1})$ for $n \geqslant 3$. If there exists a natural number $k \geqslant 3$ such that $a_k = 0$, then prove that either $a_1=0$ or $a_2=0$.

2002 National Olympiad First Round, 28

How many positive roots does polynomial $x^{2002} + a_{2001}x^{2001} + a_{2000}x^{2000} + \cdots + a_1x + a_0$ have such that $a_{2001} = 2002$ and $a_k = -k - 1$ for $0\leq k \leq 2000$? $ \textbf{a)}\ 0 \qquad\textbf{b)}\ 1 \qquad\textbf{c)}\ 2 \qquad\textbf{d)}\ 1001 \qquad\textbf{e)}\ 2002 $

2006 Romania Team Selection Test, 2

Let $p$ a prime number, $p\geq 5$. Find the number of polynomials of the form \[ x^p + px^k + p x^l + 1, \quad k > l, \quad k, l \in \left\{1,2,\dots,p-1\right\}, \] which are irreducible in $\mathbb{Z}[X]$. [i]Valentin Vornicu[/i]

2006 All-Russian Olympiad Regional Round, 11.2

Product of square trinomials $x^2 - a_1x + b_1$, $x^2 - a_2x + b_2$, $...$, $x^2-a_nx + b_n$ is equal to the polynomial $P(x) = x^{2n} +c_1x^{2n-1} +c_2x^{2n-2} +...+ c_{2n-1}x + c_{2n}$, where the coefficients are $c_1$, $c_2$, $...$ , $c_{2n}$ are positive. Show that for some $k$ ($1\le k \le n$) the coefficients $a_k$ and $b_k$ are positive.