This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2012 Dutch BxMO/EGMO TST, 1

Do there exist quadratic polynomials $P(x)$ and $Q(x)$ with real coeffcients such that the polynomial $P(Q(x))$ has precisely the zeros $x = 2, x = 3, x =5$ and $x = 7$?

1989 IMO Longlists, 69

Let $ k$ and $ s$ be positive integers. For sets of real numbers $ \{\alpha_1, \alpha_2, \ldots , \alpha_s\}$ and $ \{\beta_1, \beta_2, \ldots, \beta_s\}$ that satisfy \[ \sum^s_{i\equal{}1} \alpha^j_i \equal{} \sum^s_{i\equal{}1} \beta^j_i \quad \forall j \equal{} \{1,2 \ldots, k\}\] we write \[ \{\alpha_1, \alpha_2, \ldots , \alpha_s\} \overset{k}{\equal{}} \{\beta_1, \beta_2, \ldots , \beta_s\}.\] Prove that if \[ \{\alpha_1, \alpha_2, \ldots , \alpha_s\} \overset{k}{\equal{}} \{\beta_1, \beta_2, \ldots , \beta_s\}\] and $ s \leq k,$ then there exists a permutation $ \pi$ of $ \{1, 2, \ldots , s\}$ such that \[ \beta_i \equal{} \alpha_{\pi(i)} \quad \forall i \equal{} 1,2, \ldots, s.\]

1995 Singapore MO Open, 1

Suppose that the rational numbers $a, b$ and $c$ are the roots of the equation $x^3+ax^2 + bx + c = 0$. Find all such rational numbers $a, b$ and $c$. Justify your answer

2017 Ukraine Team Selection Test, 4

Whether exist set $A$ that contain 2016 real numbers (some of them may be equal) not all of which equal 0 such that next statement holds. For arbitrary 1008-element subset of $A$ there is a monic polynomial of degree 1008 such that elements of this subset are roots of the polynomial and other 1008 elements of $A$ are coefficients of this polynomial's degrees from 0 to 1007.

2011 Poland - Second Round, 3

There are two given different polynomials $P(x),Q(x)$ with real coefficients such that $P(Q(x))=Q(P(x))$. Prove that $\forall n\in \mathbb{Z_{+}}$ polynomial: \[\underbrace{P(P(\ldots P(P}_{n}(x))\ldots))- \underbrace{Q(Q(\ldots Q(Q}_{n}(x))\ldots))\] is divisible by $P(x)-Q(x)$.

1970 Spain Mathematical Olympiad, 4

Knowing that the polynomials $$2x^5 - 13x^4 + 4x^3 + 61x^2 + 20x-25$$ $$x^5 -4x^4 - 13x^3 + 28x^2 + 85x+50$$ have two common double roots, determine all their roots.

2015 BMT Spring, 6

The roots of the equation $x^5-180x^4+Ax^3+Bx^2+Cx+D=0$ are in geometric progression. The sum of their reciprocals is $20$. Compute $|D|$.

2011 Romanian Master of Mathematics, 2

Determine all positive integers $n$ for which there exists a polynomial $f(x)$ with real coefficients, with the following properties: (1) for each integer $k$, the number $f(k)$ is an integer if and only if $k$ is not divisible by $n$; (2) the degree of $f$ is less than $n$. [i](Hungary) Géza Kós[/i]

2016 China National Olympiad, 3

Let $p$ be an odd prime and $a_1, a_2,...,a_p$ be integers. Prove that the following two conditions are equivalent: 1) There exists a polynomial $P(x)$ with degree $\leq \frac{p-1}{2}$ such that $P(i) \equiv a_i \pmod p$ for all $1 \leq i \leq p$ 2) For any natural $d \leq \frac{p-1}{2}$, $$ \sum_{i=1}^p (a_{i+d} - a_i )^2 \equiv 0 \pmod p$$ where indices are taken $\pmod p$

1986 Swedish Mathematical Competition, 1

Show that the polynomial $x^6 -x^5 +x^4 -x^3 +x^2 -x+\frac34$ has no real zeroes.

2024 Auckland Mathematical Olympiad, 11

It is known that for quadratic polynomials $P(x)=x^2+ax+b$ and $Q(x)=x^2+cx+d$ the equation $P(Q(x))=Q(P(x))$ does not have real roots. Prove that $b \neq d$.

2006 China Team Selection Test, 2

The function $f(n)$ satisfies $f(0)=0$, $f(n)=n-f \left( f(n-1) \right)$, $n=1,2,3 \cdots$. Find all polynomials $g(x)$ with real coefficient such that \[ f(n)= [ g(n) ], \qquad n=0,1,2 \cdots \] Where $[ g(n) ]$ denote the greatest integer that does not exceed $g(n)$.

2011 Tokyo Instutute Of Technology Entrance Examination, 1

Let $f_n\ (n=1,\ 2,\ \cdots)$ be a linear transformation expressed by a matrix $\left( \begin{array}{cc} 1-n & 1 \\ -n(n+1) & n+2 \end{array} \right)$ on the $xy$ plane. Answer the following questions: (1) Prove that there exists 2 lines passing through the origin $O(0,\ 0)$ such that all points of the lines are mapped to the same lines, then find the equation of the lines. (2) Find the area $S_n$ of the figure enclosed by the lines obtained in (1) and the curve $y=x^2$. (3) Find $\sum_{n=1}^{\infty} \frac{1}{S_n-\frac 16}.$ [i]2011 Tokyo Institute of Technlogy entrance exam, Problem 1[/i]

2010 Tuymaada Olympiad, 1

Baron Münchausen boasts that he knows a remarkable quadratic triniomial with positive coefficients. The trinomial has an integral root; if all of its coefficients are increased by $1$, the resulting trinomial also has an integral root; and if all of its coefficients are also increased by $1$, the new trinomial, too, has an integral root. Can this be true?

1994 India National Olympiad, 2

If $x^5 - x ^3 + x = a,$ prove that $x^6 \geq 2a - 1$.

1976 IMO Longlists, 35

Let $P$ be a polynomial with real coefficients such that $P(x) > 0$ if $x > 0$. Prove that there exist polynomials $Q$ and $R$ with nonnegative coefficients such that $P(x) = \frac{Q(x)}{R(x)}$ if $x > 0.$

1995 Belarus Team Selection Test, 1

Prove that the number of odd coefficients in the polynomial $(1+x)^n$ is a power of $2$ for every positive integer $N$

2010 AMC 12/AHSME, 24

Let $ f(x) \equal{} \log_{10} (\sin (\pi x)\cdot\sin (2\pi x)\cdot\sin (3\pi x) \cdots \sin (8\pi x))$. The intersection of the domain of $ f(x)$ with the interval $ [0,1]$ is a union of $ n$ disjoint open intervals. What is $ n$? $ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 12 \qquad \textbf{(C)}\ 18 \qquad \textbf{(D)}\ 22 \qquad \textbf{(E)}\ 36$

2000 Czech and Slovak Match, 4

Let $P(x)$ be a polynomial with integer coefficients. Prove that the polynomial $Q(x) = P(x^4)P(x^3)P(x^2)P(x)+1$ has no integer roots.

2019 IberoAmerican, 6

Let $a_1, a_2, \dots, a_{2019}$ be positive integers and $P$ a polynomial with integer coefficients such that, for every positive integer $n$, $$P(n) \text{ divides } a_1^n+a_2^n+\dots+a_{2019}^n.$$ Prove that $P$ is a constant polynomial.

2012 Iran Team Selection Test, 1

Suppose $p$ is an odd prime number. We call the polynomial $f(x)=\sum_{j=0}^n a_jx^j$ with integer coefficients $i$-remainder if $ \sum_{p-1|j,j>0}a_{j}\equiv i\pmod{p}$. Prove that the set $\{f(0),f(1),...,f(p-1)\}$ is a complete residue system modulo $p$ if and only if polynomials $f(x), (f(x))^2,...,(f(x))^{p-2}$ are $0$-remainder and the polynomial $(f(x))^{p-1}$ is $1$-remainder. [i]Proposed by Yahya Motevassel[/i]

2024 Ukraine National Mathematical Olympiad, Problem 8

Find all polynomials $P(x)$ with integer coefficients, such that for each of them there exists a positive integer $N$, such that for any positive integer $n\geq N$, number $P(n)$ is a positive integer and a divisor of $n!$. [i]Proposed by Mykyta Kharin[/i]

2010 Contests, 2

A polynomial $f$ with integer coefficients is written on the blackboard. The teacher is a mathematician who has $3$ kids: Andrew, Beth and Charles. Andrew, who is $7$, is the youngest, and Charles is the oldest. When evaluating the polynomial on his kids' ages he obtains: [list]$f(7) = 77$ $f(b) = 85$, where $b$ is Beth's age, $f(c) = 0$, where $c$ is Charles' age.[/list] How old is each child?

1973 Putnam, B3

Consider an integer $p>1$ with the property that the polynomial $x^2 - x + p$ takes prime values for all integers $x$ such that $0\leq x <p$. Show that there is exactly one triple of integers $a, b, c$ satisfying the conditions: $$b^2 -4ac = 1-4p,\;\; 0<a \leq c,\;\; -a\leq b<a.$$

2011 NIMO Summer Contest, 9

The roots of the polynomial $P(x) = x^3 + 5x + 4$ are $r$, $s$, and $t$. Evaluate $(r+s)^4 (s+t)^4 (t+r)^4$. [i]Proposed by Eugene Chen [/i]