Found problems: 1111
1988 AMC 12/AHSME, 12
Each integer $1$ through $9$ is written on a separate slip of paper and all nine slips are put into a hat. Jack picks one of these slips at random and puts it back. Then Jill picks a slip at random. Which digit is most likely to be the units digit of the [b]sum[/b] of Jack's integer and Jill's integer?
$ \textbf{(A)}\ 0\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ \text{each digit is equally likely} $
2014 Harvard-MIT Mathematics Tournament, 1
There are $100$ students who want to sign up for the class Introduction to Acting. There are three class sections for Introduction to Acting, each of which will fit exactly $20$ students. The $100$ students, including Alex and Zhu, are put in a lottery, and 60 of them are randomly selected to fill up the classes. What is the probability that Alex and Zhu end up getting into the same section for the class?
2015 BMT Spring, 7
At Durant University, an A grade corresponds to raw scores between $90$ and $100$, and a B grade corresponds to raw scores between $80$ and $90$. Travis has $3$ equally weighted exams in his math class. Given that Travis earned an A on his first exam and a B on his second (but doesn't know his raw score for either), what is the minimum score he needs to have a $90\%$ chance of getting an A in the class? Note that scores on exams do not necessarily have to be integers.
2014 NIMO Problems, 2
Two points $A$ and $B$ are selected independently and uniformly at random along the perimeter of a unit square with vertices at $(0,0)$, $(1,0)$, $(0,1)$, and $(1,1)$. The probability that the $y$-coordinate of $A$ is strictly greater than the $y$-coordinate of $B$ can be expressed as $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Compute $100m+n$.
[i]Proposed by Rajiv Movva[/i]
2020 AMC 10, 11
Ms. Carr asks her students to read any 5 of the 10 books on a reading list. Harold randomly selects 5 books from this list, and Betty does the same. What is the probability that there are exactly 2 books that they both select?
$\textbf{(A)}\ \frac{1}{8} \qquad\textbf{(B)}\ \frac{5}{36} \qquad\textbf{(C)}\ \frac{14}{45} \qquad\textbf{(D)}\ \frac{25}{63} \qquad\textbf{(E)}\ \frac{1}{2}$
KoMaL A Problems 2022/2023, A. 839
We are given a finite, simple, non-directed graph. Ann writes positive real numbers on each edge of the graph such that for all vertices the following is true: the sum of the numbers written on the edges incident to a given vertex is less than one. Bob wants to write non-negative real numbers on the vertices in the following way: if the number written at vertex $v$ is $v_0$, and Ann's numbers on the edges incident to $v$ are $e_1,e_2,\ldots,e_k$, and the numbers on the other endpoints of these edges are $v_1,v_2,\ldots,v_k$, then $v_0=\sum_{i=1}^k e_iv_i+2022$. Prove that Bob can always number the vertices in this way regardless of the graph and the numbers chosen by Ann.
Proposed by [i]Boldizsár Varga[/i], Verőce
2009 AMC 8, 13
A three-digit integer contains one of each of the digits $ 1$, $ 3$, and $ 5$. What is the probability that the integer is divisible by $ 5$?
$ \textbf{(A)}\ \frac{1}{6} \qquad
\textbf{(B)}\ \frac{1}{3} \qquad
\textbf{(C)}\ \frac{1}{2} \qquad
\textbf{(D)}\ \frac{2}{3} \qquad
\textbf{(E)}\ \frac{5}{6}$
2019 IMC, 10
$2019$ points are chosen at random, independently, and distributed uniformly in the unit disc $\{(x,y)\in\mathbb R^2: x^2+y^2\le 1\}$. Let $C$ be the convex hull of the chosen points. Which probability is larger: that $C$ is a polygon with three vertices, or a polygon with four vertices?
[i]Proposed by Fedor Petrov, St. Petersburg State University[/i]
2017 Purple Comet Problems, 11
Dave has a pile of fair standard six-sided dice. In round one, Dave selects eight of the dice and rolls them. He calculates the sum of the numbers face up on those dice to get $r_1$. In round two, Dave selects $r_1$ dice and rolls them. He calculates the sum of the numbers face up on those dice to get $r_2$. In round three, Dave selects $r_2$ dice and rolls them. He calculates the sum of the numbers face up on those dice to get $r_3$. Find the expected value of $r_3$.
2011 Putnam, A6
Let $G$ be an abelian group with $n$ elements, and let \[\{g_1=e,g_2,\dots,g_k\}\subsetneq G\] be a (not necessarily minimal) set of distinct generators of $G.$ A special die, which randomly selects one of the elements $g_1,g_2,\dots,g_k$ with equal probability, is rolled $m$ times and the selected elements are multiplied to produce an element $g\in G.$
Prove that there exists a real number $b\in(0,1)$ such that \[\lim_{m\to\infty}\frac1{b^{2m}}\sum_{x\in G}\left(\mathrm{Prob}(g=x)-\frac1n\right)^2\] is positive and finite.
1988 IMO Longlists, 81
There are $ n \geq 3$ job openings at a factory, ranked $1$ to $ n$ in order of increasing pay. There are $ n$ job applicants, ranked from $1$ to $ n$ in order of increasing ability. Applicant $ i$ is qualified for job $ j$ if and only if $ i \geq j.$ The applicants arrive one at a time in random order. Each in turn is hired to the highest-ranking job for which he or she is qualified AND which is lower in rank than any job already filled. (Under these rules, job $1$ is always filled, and hiring terminates thereafter.) Show that applicants $ n$ and $ n \minus{} 1$ have the same probability of being hired.
2014 AIME Problems, 2
Arnold is studying the prevalence of three health risk factors, denoted by A, B, and C. within a population of men. For each of the three factors, the probability that a randomly selected man in the population as only this risk factor (and none of the others) is 0.1. For any two of the three factors, the probability that a randomly selected man has exactly two of these two risk factors (but not the third) is 0.14. The probability that a randomly selected man has all three risk factors, given that he has A and B is $\tfrac{1}{3}$. The probability that a man has none of the three risk factors given that he does not have risk factor A is $\tfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.
2018 Indonesia Juniors, day 2
P6. It is given the integer $Y$ with
$Y = 2018 + 20118 + 201018 + 2010018 + \cdots + 201 \underbrace{00 \ldots 0}_{\textrm{100 digits}} 18.$
Determine the sum of all the digits of such $Y$. (It is implied that $Y$ is written with a decimal representation.)
P7. Three groups of lines divides a plane into $D$ regions. Every pair of lines in the same group are parallel. Let $x, y$ and $z$ respectively be the number of lines in groups 1, 2, and 3. If no lines in group 3 go through the intersection of any two lines (in groups 1 and 2, of course), then the least number of lines required in order to have more than 2018 regions is ....
P8. It is known a frustum $ABCD.EFGH$ where $ABCD$ and $EFGH$ are squares with both planes being parallel. The length of the sides of $ABCD$ and $EFGH$ respectively are $6a$ and $3a$, and the height of the frustum is $3t$. Points $M$ and $N$ respectively are intersections of the diagonals of $ABCD$ and $EFGH$ and the line $MN$ is perpendicular to the plane $EFGH$. Construct the pyramids $M.EFGH$ and $N.ABCD$ and calculate the volume of the 3D figure which is the intersection of pyramids $N.ABCD$ and $M.EFGH$.
P9. Look at the arrangement of natural numbers in the following table. The position of the numbers is determined by their row and column numbers, and its diagonal (which, the sequence of numbers is read from the bottom left to the top right). As an example, the number $19$ is on the 3rd row, 4th column, and on the 6th diagonal. Meanwhile the position of the number $26$ is on the 3rd row, 5th column, and 7th diagonal.
(Image should be placed here, look at attachment.)
a) Determine the position of the number $2018$ based on its row, column, and diagonal.
b) Determine the average of the sequence of numbers whose position is on the "main diagonal" (quotation marks not there in the first place), which is the sequence of numbers read from the top left to the bottom right: 1, 5, 13, 25, ..., which the last term is the largest number that is less than or equal to $2018$.
P10. It is known that $A$ is the set of 3-digit integers not containing the digit $0$. Define a [i]gadang[/i] number to be the element of $A$ whose digits are all distinct and the digits contained in such number are not prime, and (a [i]gadang[/i] number leaves a remainder of 5 when divided by 7. If we pick an element of $A$ at random, what is the probability that the number we picked is a [i]gadang[/i] number?
2008 China Team Selection Test, 3
Let $ S$ be a set that contains $ n$ elements. Let $ A_{1},A_{2},\cdots,A_{k}$ be $ k$ distinct subsets of $ S$, where $ k\geq 2, |A_{i}| \equal{} a_{i}\geq 1 ( 1\leq i\leq k)$. Prove that the number of subsets of $ S$ that don't contain any $ A_{i} (1\leq i\leq k)$ is greater than or equal to $ 2^n\prod_{i \equal{} 1}^k(1 \minus{} \frac {1}{2^{a_{i}}}).$
2003 AMC 10, 21
A bag contains two red beads and two green beads. You reach into the bag and pull out a bead, replacing it with a red bead regardless of the color you pulled out. What is the probability that all beads in the bag are red after three such replacements?
$ \textbf{(A)}\ \frac{1}{8} \qquad
\textbf{(B)}\ \frac{5}{32} \qquad
\textbf{(C)}\ \frac{9}{32} \qquad
\textbf{(D)}\ \frac{3}{8} \qquad
\textbf{(E)}\ \frac{7}{16}$
2020 AMC 12/AHSME, 20
Two different cubes of the same size are to be painted, with the color of each face being chosen independently and at random to be either black or white. What is the probability that after they are painted, the cubes can be rotated to be identical in appearance?
$\textbf{(A)}\ \frac{9}{64} \qquad\textbf{(B)}\ \frac{289}{2048} \qquad\textbf{(C)}\ \frac{73}{512} \qquad\textbf{(D)}\ \frac{147}{1024} \qquad\textbf{(E)}\ \frac{589}{4096}$
2020 AMC 12/AHSME, 16
A point is chosen at random within the square in the coordinate plane whose vertices are $(0, 0),$ $(2020, 0),$ $(2020, 2020),$ and $(0, 2020)$. The probability that the point is within $d$ units of a lattice point is $\tfrac{1}{2}$. (A point $(x, y)$ is a lattice point if $x$ and $y$ are both integers.) What is $d$ to the nearest tenth$?$
$\textbf{(A) } 0.3 \qquad \textbf{(B) } 0.4 \qquad \textbf{(C) } 0.5 \qquad \textbf{(D) } 0.6 \qquad \textbf{(E) } 0.7$
2024 CCA Math Bonanza, T2
Echo the gecko starts on the point $(0, 0)$ in the 2D coordinate plane. Every minute, starting at the end of the first minute, he'll teleport $1$ unit up, left, right, or down with equal probability. Echo dies the moment he lands on a point that is more than $1$ unit away from the origin. The average number of minutes he'll live can be expressed as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[i]Team #2[/i]
1972 USAMO, 3
A random selector can only select one of the nine integers $ 1,2,\ldots,9$, and it makes these selections with equal probability. Determine the probability that after $ n$ selections ($ n>1$), the product of the $ n$ numbers selected will be divisible by 10.
1991 AMC 8, 22
Each spinner is divided into $3$ equal parts. The results obtained from spinning the two spinners are multiplied. What is the probability that this product is an even number?
[asy]
draw(circle((0,0),2)); draw(circle((5,0),2));
draw((0,0)--(sqrt(3),1)); draw((0,0)--(-sqrt(3),1)); draw((0,0)--(0,-2));
draw((5,0)--(5+sqrt(3),1)); draw((5,0)--(5-sqrt(3),1)); draw((5,0)--(5,-2));
fill((0,5/3)--(2/3,7/3)--(1/3,7/3)--(1/3,3)--(-1/3,3)--(-1/3,7/3)--(-2/3,7/3)--cycle,black);
fill((5,5/3)--(17/3,7/3)--(16/3,7/3)--(16/3,3)--(14/3,3)--(14/3,7/3)--(13/3,7/3)--cycle,black);
label("$1$",(0,1/2),N); label("$2$",(sqrt(3)/4,-1/4),ESE); label("$3$",(-sqrt(3)/4,-1/4),WSW);
label("$4$",(5,1/2),N); label("$5$",(5+sqrt(3)/4,-1/4),ESE); label("$6$",(5-sqrt(3)/4,-1/4),WSW);
[/asy]
$\text{(A)}\ \frac{1}{3} \qquad \text{(B)}\ \frac{1}{2} \qquad \text{(C)}\ \frac{2}{3} \qquad \text{(D)}\ \frac{7}{9} \qquad \text{(E)}\ 1$
1999 AMC 12/AHSME, 29
A tetrahedron with four equilateral triangular faces has a sphere inscribed within it and a sphere circumscribed about it. For each of the four faces, there is a sphere tangent externally to the face at its center and to the circumscribed sphere. A point $ P$ is selected at random inside the circumscribed sphere. The probability that $ P$ lies inside one of the five small spheres is closest to
$ \textbf{(A)}\ 0\qquad
\textbf{(B)}\ 0.1\qquad
\textbf{(C)}\ 0.2\qquad
\textbf{(D)}\ 0.3\qquad
\textbf{(E)}\ 0.4$
2018 Harvard-MIT Mathematics Tournament, 5
Lil Wayne, the rain god, determines the weather. If Lil Wayne makes it rain on any given day, the probability that he makes it rain the next day is $75\%$. If Lil Wayne doesn't make it rain on one day, the probability that he makes it rain the next day is $25\%$. He decides not to make it rain today. Find the smallest positive integer $n$ such that the probability that Lil Wayne [i]makes it rain[/i] $n$ days from today is greater than $49.9\%$.
2013 AMC 10, 12
Let $S$ be the set of sides and diagonals of a regular pentagon. A pair of elements of $S$ are selected at random without replacement. What is the probability that the two chosen segments have the same length?
$ \textbf{(A) }\frac25\qquad\textbf{(B) }\frac49\qquad\textbf{(C) }\frac12\qquad\textbf{(D) }\frac59\qquad\textbf{(E) }\frac45 $
2005 Putnam, A6
Let $n$ be given, $n\ge 4,$ and suppose that $P_1,P_2,\dots,P_n$ are $n$ randomly, independently and uniformly, chosen points on a circle. Consider the convex $n$-gon whose vertices are the $P_i.$ What is the probability that at least one of the vertex angles of this polygon is acute.?
1983 Miklós Schweitzer, 12
Let $ X_1,X_2,\ldots, X_n$ be independent, identically distributed, nonnegative random variables with a common continuous distribution function $ F$. Suppose in addition that the inverse of $ F$, the quantile function $ Q$, is also continuous and $ Q(0)=0$. Let $ 0=X_{0: n} \leq X_{1: n} \leq \ldots \leq X_{n: n}$ be the ordered sample from the above random variables. Prove that if $ EX_1$ is finite, then the random variable \[ \Delta = \sup_{0\leq y \leq 1} \left| \frac 1n \sum_{i=1}^{\lfloor ny \rfloor +1} (n+1-i)(X_{i: n}-X_{i-1: n})- \int_0^y (1-u)dQ(u) \right|\] tends to zero with probability one as $ n \rightarrow \infty$.
[i]S. Csorgp, L. Horvath[/i]