Found problems: 1111
2018 Indonesia Juniors, day 1
The problems are really difficult to find online, so here are the problems.
P1. It is known that two positive integers $m$ and $n$ satisfy $10n - 9m = 7$ dan $m \leq 2018$. The number $k = 20 - \frac{18m}{n}$ is a fraction in its simplest form.
a) Determine the smallest possible value of $k$.
b) If the denominator of the smallest value of $k$ is (equal to some number) $N$, determine all positive factors of $N$.
c) On taking one factor out of all the mentioned positive factors of $N$ above (specifically in problem b), determine the probability of taking a factor who is a multiple of 4.
I added this because my translation is a bit weird.
[hide=Indonesian Version] Diketahui dua bilangan bulat positif $m$ dan $n$ dengan $10n - 9m = 7$ dan $m \leq 2018$. Bilangan $k = 20 - \frac{18m}{n}$ merupakan suatu pecahan sederhana.
a) Tentukan bilangan $k$ terkecil yang mungkin.
b) Jika penyebut bilangan $k$ terkecil tersebut adalah $N$, tentukan semua faktor positif dari $N$.
c) Pada pengambilan satu faktor dari faktor-faktor positif $N$ di atas, tentukan peluang terambilnya satu faktor kelipatan 4.[/hide]
P2. Let the functions $f, g : \mathbb{R} \to \mathbb{R}$ be given in the following graphs.
[hide=Graph Construction Notes]I do not know asymptote, can you please help me draw the graphs? Here are its complete description:
For both graphs, draw only the X and Y-axes, do not draw grids. Denote each axis with $X$ or $Y$ depending on which line you are referring to, and on their intercepts, draw a small node (a circle) then mark their $X$ or $Y$ coordinates only (since their other coordinates are definitely 0).
Graph (1) is the function $f$, who is a quadratic function with -2 and 4 as its $X$-intercepts and 4 as its $Y$-intercept. You also put $f$ right besides the curve you have, preferably just on the right-up direction of said curve.
Graph (2) is the function $g$, which is piecewise. For $x \geq 0$, $g(x) = \frac{1}{2}x - 2$, whereas for $x < 0$, $g(x) = - x - 2$. You also put $g$ right besides the curve you have, on the lower right of the line, on approximately $x = 2$.[/hide]
Define the function $g \circ f$ with $(g \circ f)(x) = g(f(x))$ for all $x \in D_f$ where $D_f$ is the domain of $f$.
a) Draw the graph of the function $g \circ f$.
b) Determine all values of $x$ so that $-\frac{1}{2} \leq (g \circ f)(x) \leq 6$.
P3. The quadrilateral $ABCD$ has side lengths $AB = BC = 4\sqrt{3}$ cm and $CD = DA = 4$ cm. All four of its vertices lie on a circle. Calculate the area of quadrilateral $ABCD$.
P4. There exists positive integers $x$ and $y$, with $x < 100$ and $y > 9$. It is known that $y = \frac{p}{777} x$, where $p$ is a 3-digit number whose number in its tens place is 5. Determine the number/quantity of all possible values of $y$.
P5. The 8-digit number $\overline{abcdefgh}$ (the original problem does not have an overline, which I fixed) is arranged from the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$. Such number satisfies $a + c + e + g \geq b + d + f + h$. Determine the quantity of different possible (such) numbers.
1996 Singapore MO Open, 1
Three numbers are selected at random from the interval $[0,1]$. What is the probability that they form the lengths of the sides of a triangle?
1995 Miklós Schweitzer, 12
Let F(x) be a known distribution function, the random variables $\eta_1 , \eta_2 ...$ be independent of the common distribution function $F( x - \vartheta)$, where $\vartheta$ is the shift parameter. Let us call the shift parameter "well estimated" if there exists a positive constant c, so that any of $\varepsilon> 0$ there exist a Lebesgue measure $\varepsilon$ Borel set E ("confidence set") and a Borel-measurable function $t_n( x_1 ,. .., x_n )$ ( n = 1,2, ...) such that for any $\vartheta$ we have
$$P ( \vartheta- t_n ( \eta_1 , ..., \eta_n ) \in E )> 1-e^{-cn} \qquad( n > n_0 ( \varepsilon, F ) )$$
Prove that
a) if F is not absolutely continuous, then the shift parameter is "well estimated",
b) if F is absolutely continuous and F' is continuous, then it is not "well estimated".
2014 Online Math Open Problems, 18
We select a real number $\alpha$ uniformly and at random from the interval $(0,500)$. Define \[ S = \frac{1}{\alpha} \sum_{m=1}^{1000} \sum_{n=m}^{1000} \left\lfloor \frac{m+\alpha}{n} \right\rfloor. \] Let $p$ denote the probability that $S \ge 1200$. Compute $1000p$.
[i]Proposed by Evan Chen[/i]
2013 Purple Comet Problems, 17
A rectangle has side lengths $6$ and $8$. There are relatively prime positive integers $m$ and $n$ so that $\tfrac{m}{n}$ is the probability that a point randomly selected from the inside of the rectangle is closer to a side of the rectangle than to either diagonal of the rectangle. Find $m + n$.
2018 PUMaC Live Round, Calculus 2
Three friends are trying to meet for lunch at a cafe. Each friend will arrive independently at random between $1\!:\!00$ pm and $2\!:\!00$ pm. Each friend will only wait for $5$ minutes by themselves before leaving. However, if another friend arrives within those $5$ minutes, the pair will wait $15$ minutes from the time the second friend arrives. If the probability that the three friends meet for lunch can be expressed in simplest form as $\tfrac{m}{n}$, what is $m+n$?
2014 AMC 8, 11
Jack wants to bike from his house to Jill's house, which is located three blocks east and two blocks north of Jack's house. After biking each block, Jack can continue either east or north, but he needs to avoid a dangerous intersection one block east and one block north of his house. In how many ways can he reach Jill's house by biking a total of five blocks?
$\textbf{(A) }4\qquad\textbf{(B) }5\qquad\textbf{(C) }6\qquad\textbf{(D) }8\qquad \textbf{(E) }10$
2015 Kurschak Competition, 1
In fencing, you win a round if you are the first to reach $15$ points. Suppose that when $A$ plays against $B$, at any point during the round, $A$ scores the next point with probability $p$ and $B$ scores the next point with probability $q=1-p$. (However, they never can both score a point at the same time.)
Suppose that in this round, $A$ already has $14-k$ points, and $B$ has $14-\ell$ (where $0\le k,\ell\le 14$). By how much will the probability that $A$ wins the round increase if $A$ scores the next point?
2011 AMC 12/AHSME, 14
Suppose $a$ and $b$ are single-digit positive integers chosen independently and at random. What is the probability that the point $(a,b)$ lies above the parabola $y=ax^2-bx$?
$ \textbf{(A)}\ \frac{11}{81} \qquad
\textbf{(B)}\ \frac{13}{81} \qquad
\textbf{(C)}\ \frac{5}{27} \qquad
\textbf{(D)}\ \frac{17}{81} \qquad
\textbf{(E)}\ \frac{19}{81}
$
2015 AMC 10, 16
Al, Bill, and Cal will each randomly be assigned a whole number from $1$ to $10$, inclusive, with no two of them getting the same number. What is the probability that Al's number will be a whole number multiple of Bill's and Bill's number will be a whole number multiple of Cal's?
$\textbf{(A) } \dfrac{9}{1000}
\qquad\textbf{(B) } \dfrac{1}{90}
\qquad\textbf{(C) } \dfrac{1}{80}
\qquad\textbf{(D) } \dfrac{1}{72}
\qquad\textbf{(E) } \dfrac{2}{121}
$
2006 Stanford Mathematics Tournament, 7
Let $S$ be the set of all 3-tuples $(a,b,c)$ that satisfy $a+b+c=3000$ and $a,b,c>0$. If one of these 3-tuples is chosen at random, what's the probability that $a,b$ or $c$ is greater than or equal to 2,500?
2020 Iranian Combinatorics Olympiad, 2
Morteza and Amir Reza play the following game. First each of them independently roll a dice $100$ times in a row to construct a $100$-digit number with digits $1,2,3,4,5,6$ then they simultaneously shout a number from $1$ to $100$ and write down the corresponding digit to the number other person shouted in their $100$ digit number. If both of the players write down $6$ they both win otherwise they both loose. Do they have a strategy with wining chance more than $\frac{1}{36}$?
[i]Proposed by Morteza Saghafian[/i]
2018 USA Team Selection Test, 2
Find all functions $f\colon \mathbb{Z}^2 \to [0, 1]$ such that for any integers $x$ and $y$,
\[f(x, y) = \frac{f(x - 1, y) + f(x, y - 1)}{2}.\]
[i]Proposed by Yang Liu and Michael Kural[/i]
2012 Hitotsubashi University Entrance Examination, 5
At first a fair dice is placed in such way the spot $1$ is shown on the top face. After that, select a face from the four sides at random, the process that the side would be the top face is repeated $n$ times. Note the sum of the spots of opposite face is 7.
(1) Find the probability such that the spot $1$ would appear on the top face after the $n$-repetition.
(2) Find the expected value of the number of the spot on the top face after the $n$-repetition.
2016 CHMMC (Fall), 2
Alice and Bob find themselves on a coordinate plane at time $t=0$ at $A(1,0)$ and $B(-1,0)$ respectively. They have no sense of direction, but they want to find each other. They each pick a direction independently and with uniform random probability. Both Alice and Bob travel at a constant speed of $1 \frac{unit}{min}$ in their chosen directions. They continue on their straight line paths forever, each hoping to catch sight of the other. They both have a $1$ unit radius of view; they can see something if and only if its distance from them is at most $1$ unit. What is the probability they never see each other?
2007 ITest, 44
A positive integer $n$ between $1$ and $N=2007^{2007}$ inclusive is selected at random. If $a$ and $b$ are natural numbers such that $a/b$ is the probability that $N$ and $n^3-36n$ are relatively prime, find the value of $a+b$.
2018 PUMaC Live Round, 2.3
Sophie has $20$ indistinguishable pairs of socks in a laundry bag. She pulls them out one at a time. After pulling out $30$ socks, the expected number of unmatched socks among the socks that she has pulled out can be expressed in simplest form as $\tfrac{m}{n}$. Find $m+n$.
2020 LIMIT Category 2, 9
Three points are chosen randomly and independently on a circle. The probability that all three pairwise distance between the points are less than the radius of the circle is $\frac{1}{K}$, $K\in\mathbb{N}$. Find $K$.
1962 Miklós Schweitzer, 10
From a given triangle of unit area, we choose two points independetly with uniform distribution. The straight line connecting these points divides the triangle. with probability one, into a triangle and a quadrilateral. Calculate the expected values of the areas of these two regions. [A. Renyi]
1987 IMO Longlists, 37
Five distinct numbers are drawn successively and at random from the set $\{1, \cdots , n\}$. Show that the probability of a draw in which the first three numbers as well as all five numbers can be arranged to form an arithmetic progression is greater than $\frac{6}{(n-2)^3}$
1992 Flanders Math Olympiad, 2
It has come to a policeman's ears that 5 gangsters (all of different height) are meeting, one of them is the clan leader, he's the tallest of the 5. He knows the members will leave the building one by one, with a 10-minute break between them, and too bad for him Belgium has not enough policemen to follow all gangsters, so he's on his own to spot the clanleader, and he can only follow one member.
So he decides to let go the first 2 people, and then follow the first one that is taller than those two. What's the chance he actually catches the clan leader like this?
2013 Online Math Open Problems, 29
Kevin has $255$ cookies, each labeled with a unique nonempty subset of $\{1,2,3,4,5,6,7,8\}$. Each day, he chooses one cookie uniformly at random out of the cookies not yet eaten. Then, he eats that cookie, and all remaining cookies that are labeled with a subset of that cookie (for example, if he chooses the cookie labeled with $\{1,2\}$, he eats that cookie as well as the cookies with $\{1\}$ and $\{2\}$). The expected value of the number of days that Kevin eats a cookie before all cookies are gone can be expressed in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[i]Proposed by Ray Li[/i]
2022 Harvard-MIT Mathematics Tournament, 10
Let $S$ be a set of size $11$. A random $12$-tuple $(s_1, s_2, . . . , s_{12})$ of elements of $S$ is chosen uniformly at random. Moreover, let $\pi : S \to S$ be a permutation of $S$ chosen uniformly at random. The probability that $s_{i+1}\ne \pi (s_i)$ for all $1 \le i \le 12$ (where $s_{13} = s_1$) can be written as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Compute $a$.
2015 CCA Math Bonanza, L4.3
Andrew the ant starts at vertex $A$ of square $ABCD$. Each time he moves, he chooses the clockwise vertex with probability $\frac{2}{3}$ and the counter-clockwise vertex with probability $\frac{1}{3}$. What is the probability that he ends up on vertex $A$ after $6$ moves?
[i]2015 CCA Math Bonanza Lightning Round #4.3[/i]
1970 AMC 12/AHSME, 31
If a number is selected at random from the set of all five-digit numbers in which the sum of the digits is equal to $43$, what is the probability that this number is divisible by $11$?
$\textbf{(A) }2/5\qquad\textbf{(B) }1/5\qquad\textbf{(C) }1/6\qquad\textbf{(D) }1/11\qquad \textbf{(E) }1/15$