This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 232

2007 Cono Sur Olympiad, 3

Let $ABC$ be an acute triangle with altitudes $AD$, $BE$, $CF$ where $D$, $E$, $F$ lie on $BC$, $AC$, $AB$, respectively. Let $M$ be the midpoint of $BC$. The circumcircle of triangle $AEF$ cuts the line $AM$ at $A$ and $X$. The line $AM$ cuts the line $CF$ at $Y$. Let $Z$ be the point of intersection of $AD$ and $BX$. Show that the lines $YZ$ and $BC$ are parallel.

2010 Belarus Team Selection Test, 6.2

Given a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ meet at $E$ and the lines $AD$ and $BC$ meet at $F$. The midpoints of $AB$ and $CD$ are $G$ and $H$, respectively. Show that $EF$ is tangent at $E$ to the circle through the points $E$, $G$ and $H$. [i]Proposed by David Monk, United Kingdom[/i]

Cono Sur Shortlist - geometry, 2012.G4.2

2. In a square $ABCD$, let $P$ be a point in the side $CD$, different from $C$ and $D$. In the triangle $ABP$, the altitudes $AQ$ and $BR$ are drawn, and let $S$ be the intersection point of lines $CQ$ and $DR$. Show that $\angle ASB=90$.

2024 Brazil EGMO TST, 4

Let $ABCD$ be a cyclic quadrilateral with all distinct sides that has an inscribed circle. The incircle of $ABCD$ has center $I$ and is tangent to $AB$, $BC$, $CD$, and $DA$ at points $W$, $X$, $Y$, and $Z$, respectively. Let $K$ be the intersection of the lines $WX$ and $YZ$. Prove that $KI$ is tangent to the circumcircle of triangle $AIC$.

2014 IMO, 4

Let $P$ and $Q$ be on segment $BC$ of an acute triangle $ABC$ such that $\angle PAB=\angle BCA$ and $\angle CAQ=\angle ABC$. Let $M$ and $N$ be the points on $AP$ and $AQ$, respectively, such that $P$ is the midpoint of $AM$ and $Q$ is the midpoint of $AN$. Prove that the intersection of $BM$ and $CN$ is on the circumference of triangle $ABC$. [i]Proposed by Giorgi Arabidze, Georgia.[/i]

2003 China Team Selection Test, 2

Denote by $\left(ABC\right)$ the circumcircle of a triangle $ABC$. Let $ABC$ be an isosceles right-angled triangle with $AB=AC=1$ and $\measuredangle CAB=90^{\circ}$. Let $D$ be the midpoint of the side $BC$, and let $E$ and $F$ be two points on the side $BC$. Let $M$ be the point of intersection of the circles $\left(ADE\right)$ and $\left(ABF\right)$ (apart from $A$). Let $N$ be the point of intersection of the line $AF$ and the circle $\left(ACE\right)$ (apart from $A$). Let $P$ be the point of intersection of the line $AD$ and the circle $\left(AMN\right)$. Find the length of $AP$.

2014 Greece National Olympiad, 4

We are given a circle $c(O,R)$ and two points $A,B$ so that $R<AB<2R$.The circle $c_1 (A,r)$ ($0<r<R$) crosses the circle $c$ at C,D ($C$ belongs to the short arc $AB$).From $B$ we consider the tangent lines $BE,BF$ to the circle $c_1$ ,in such way that $E$ lays out of the circle $c$.If $M\equiv EC\cap DF$ show that the quadrilateral $BCFM$ is cyclic.

2019 Brazil Team Selection Test, 2

Let $n\geqslant 3$ be an integer. Prove that there exists a set $S$ of $2n$ positive integers satisfying the following property: For every $m=2,3,...,n$ the set $S$ can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality $m$.

2012 Romania Team Selection Test, 2

Let $\gamma$ be a circle and $l$ a line in its plane. Let $K$ be a point on $l$, located outside of $\gamma$. Let $KA$ and $KB$ be the tangents from $K$ to $\gamma$, where $A$ and $B$ are distinct points on $\gamma$. Let $P$ and $Q$ be two points on $\gamma$. Lines $PA$ and $PB$ intersect line $l$ in two points $R$ and respectively $S$. Lines $QR$ and $QS$ intersect the second time circle $\gamma$ in points $C$ and $D$. Prove that the tangents from $C$ and $D$ to $\gamma$ are concurrent on line $l$.

2006 Junior Balkan Team Selection Tests - Moldova, 2

Let $ABCD$ be a rectangle and denote by $M$ and $N$ the midpoints of $AD$ and $BC$ respectively. The point $P$ is on $(CD$ such that $D\in (CP)$, and $PM$ intersects $AC$ in $Q$. Prove that $m(\angle{MNQ})=m(\angle{MNP})$.

2004 Iran MO (3rd Round), 9

Let $ABC$ be a triangle, and $O$ the center of its circumcircle. Let a line through the point $O$ intersect the lines $AB$ and $AC$ at the points $M$ and $N$, respectively. Denote by $S$ and $R$ the midpoints of the segments $BN$ and $CM$, respectively. Prove that $\measuredangle ROS=\measuredangle BAC$.

1993 Kurschak Competition, 2

Triangle $ABC$ is not isosceles. The incircle of $\triangle ABC$ touches the sides $BC$, $CA$, $AB$ in the points $K$, $L$, $M$. The parallel with $LM$ through $B$ meets $KL$ at $D$, the parallel with $LM$ through $C$ meets $KM$ at $E$. Prove that $DE$ passes through the midpoint of $\overline{LM}$.

2017 USA Team Selection Test, 2

Let $ABC$ be a triangle with altitude $\overline{AE}$. The $A$-excircle touches $\overline{BC}$ at $D$, and intersects the circumcircle at two points $F$ and $G$. Prove that one can select points $V$ and $N$ on lines $DG$ and $DF$ such that quadrilateral $EVAN$ is a rhombus. [i]Danielle Wang and Evan Chen[/i]

2008 Iran Team Selection Test, 2

Suppose that $ I$ is incenter of triangle $ ABC$ and $ l'$ is a line tangent to the incircle. Let $ l$ be another line such that intersects $ AB,AC,BC$ respectively at $ C',B',A'$. We draw a tangent from $ A'$ to the incircle other than $ BC$, and this line intersects with $ l'$ at $ A_1$. $ B_1,C_1$ are similarly defined. Prove that $ AA_1,BB_1,CC_1$ are concurrent.

2022 Brazil Team Selection Test, 4

Let $ABCD$ be a cyclic quadrilateral whose sides have pairwise different lengths. Let $O$ be the circumcenter of $ABCD$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $B_1$ and $D_1$, respectively. Let $O_B$ be the center of the circle which passes through $B$ and is tangent to $\overline{AC}$ at $D_1$. Similarly, let $O_D$ be the center of the circle which passes through $D$ and is tangent to $\overline{AC}$ at $B_1$. Assume that $\overline{BD_1} \parallel \overline{DB_1}$. Prove that $O$ lies on the line $\overline{O_BO_D}$.

2014 Chile TST IMO, 3

In a triangle \( ABC \), \( D \) is the foot of the altitude from \( C \). Let \( P \in \overline{CD} \). \( Q \) is the intersection of \( \overline{AP} \) and \( \overline{CB} \), and \( R \) is the intersection of \( \overline{BP} \) and \( \overline{CA} \). Prove that \( \angle RDC = \angle QDC \).

2014 ELMO Shortlist, 3

Let $A_1A_2A_3 \cdots A_{2013}$ be a cyclic $2013$-gon. Prove that for every point $P$ not the circumcenter of the $2013$-gon, there exists a point $Q\neq P$ such that $\frac{A_iP}{A_iQ}$ is constant for $i \in \{1, 2, 3, \cdots, 2013\}$. [i]Proposed by Robin Park[/i]

2019 Hong Kong TST, 2

Let $n\geqslant 3$ be an integer. Prove that there exists a set $S$ of $2n$ positive integers satisfying the following property: For every $m=2,3,...,n$ the set $S$ can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality $m$.

Russian TST 2022, P2

Let $ABCD$ be a cyclic quadrilateral whose sides have pairwise different lengths. Let $O$ be the circumcenter of $ABCD$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $B_1$ and $D_1$, respectively. Let $O_B$ be the center of the circle which passes through $B$ and is tangent to $\overline{AC}$ at $D_1$. Similarly, let $O_D$ be the center of the circle which passes through $D$ and is tangent to $\overline{AC}$ at $B_1$. Assume that $\overline{BD_1} \parallel \overline{DB_1}$. Prove that $O$ lies on the line $\overline{O_BO_D}$.

2010 CentroAmerican, 2

Let $ABC$ be a triangle and $L$, $M$, $N$ be the midpoints of $BC$, $CA$ and $AB$, respectively. The tangent to the circumcircle of $ABC$ at $A$ intersects $LM$ and $LN$ at $P$ and $Q$, respectively. Show that $CP$ is parallel to $BQ$.

2018 Taiwan TST Round 3, 4

Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.

2003 Federal Competition For Advanced Students, Part 2, 3

Let $ABC$ be an acute-angled triangle. The circle $k$ with diameter $AB$ intersects $AC$ and $BC$ again at $P$ and $Q$, respectively. The tangents to $k$ at $A$ and $Q$ meet at $R$, and the tangents at $B$ and $P$ meet at $S$. Show that $C$ lies on the line $RS$.

2011 China Girls Math Olympiad, 8

The $A$-excircle $(O)$ of $\triangle ABC$ touches $BC$ at $M$. The points $D,E$ lie on the sides $AB,AC$ respectively such that $DE\parallel BC$. The incircle $(O_1)$ of $\triangle ADE$ touches $DE$ at $N$. If $BO_1\cap DO=F$ and $CO_1\cap EO=G$, prove that the midpoint of $FG$ lies on $MN$.

1974 Canada National Olympiad, 5

Given a circle with diameter $AB$ and a point $X$ on the circle different from $A$ and $B$, let $t_{a}$, $t_{b}$ and $t_{x}$ be the tangents to the circle at $A$, $B$ and $X$ respectively. Let $Z$ be the point where line $AX$ meets $t_{b}$ and $Y$ the point where line $BX$ meets $t_{a}$. Show that the three lines $YZ$, $t_{x}$ and $AB$ are either concurrent (i.e., all pass through the same point) or parallel. [img]6762[/img]

2006 China Northern MO, 1

$AB$ is the diameter of circle $O$, $CD$ is a non-diameter chord that is perpendicular to $AB$. Let $E$ be the midpoint of $OC$, connect $AE$ and extend it to meet the circle at point $P$. Let $DP$ and $BC$ meet at $F$. Prove that $F$ is the midpoint of $BC$.