This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 232

Croatia MO (HMO) - geometry, 2011.7

Let $K$ and $L$ be the points on the semicircle with diameter $AB$. Denote intersection of $AK$ and $AL$ as $T$ and let $N$ be the point such that $N$ is on segment $AB$ and line $TN$ is perpendicular to $AB$. If $U$ is the intersection of perpendicular bisector of $AB$ an $KL$ and $V$ is a point on $KL$ such that angles $UAV$ and $UBV$ are equal. Prove that $NV$ is perpendicular to $KL$.

2009 Hong Kong TST, 4

Two circles $ C_1,C_2$ with different radii are given in the plane, they touch each other externally at $ T$. Consider any points $ A\in C_1$ and $ B\in C_2$, both different from $ T$, such that $ \angle ATB \equal{} 90^{\circ}$. (a) Show that all such lines $ AB$ are concurrent. (b) Find the locus of midpoints of all such segments $ AB$.

2008 Philippine MO, 3

Let $P$ be a point outside a circle $\Gamma$, and let the two tangent lines through $P$ touch $\Gamma$ at $A$ and $B$. Let $C$ be on the minor arc $AB$, and let ray $PC$ intersect $\Gamma$ again at $D$. Let $\ell$ be the line through $B$ and parallel to $PA$. $\ell$ intersects $AC$ and $AD$ at $E$ and $F$, respectively. Prove that $B$ is the midpoint of $EF$.

2012 Romania Team Selection Test, 2

Let $\gamma$ be a circle and $l$ a line in its plane. Let $K$ be a point on $l$, located outside of $\gamma$. Let $KA$ and $KB$ be the tangents from $K$ to $\gamma$, where $A$ and $B$ are distinct points on $\gamma$. Let $P$ and $Q$ be two points on $\gamma$. Lines $PA$ and $PB$ intersect line $l$ in two points $R$ and respectively $S$. Lines $QR$ and $QS$ intersect the second time circle $\gamma$ in points $C$ and $D$. Prove that the tangents from $C$ and $D$ to $\gamma$ are concurrent on line $l$.

2013 ELMO Shortlist, 6

Let $ABCDEF$ be a non-degenerate cyclic hexagon with no two opposite sides parallel, and define $X=AB\cap DE$, $Y=BC\cap EF$, and $Z=CD\cap FA$. Prove that \[\frac{XY}{XZ}=\frac{BE}{AD}\frac{\sin |\angle{B}-\angle{E}|}{\sin |\angle{A}-\angle{D}|}.\][i]Proposed by Victor Wang[/i]

2018 Taiwan TST Round 3, 4

Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.

2021 IMO Shortlist, G5

Let $ABCD$ be a cyclic quadrilateral whose sides have pairwise different lengths. Let $O$ be the circumcenter of $ABCD$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $B_1$ and $D_1$, respectively. Let $O_B$ be the center of the circle which passes through $B$ and is tangent to $\overline{AC}$ at $D_1$. Similarly, let $O_D$ be the center of the circle which passes through $D$ and is tangent to $\overline{AC}$ at $B_1$. Assume that $\overline{BD_1} \parallel \overline{DB_1}$. Prove that $O$ lies on the line $\overline{O_BO_D}$.

2010 Contests, 1

Let $ ABC$ be a triangle with circum-circle $ \Gamma$. Let $ M$ be a point in the interior of triangle $ ABC$ which is also on the bisector of $ \angle A$. Let $ AM, BM, CM$ meet $ \Gamma$ in $ A_{1}, B_{1}, C_{1}$ respectively. Suppose $ P$ is the point of intersection of $ A_{1}C_{1}$ with $ AB$; and $ Q$ is the point of intersection of $ A_{1}B_{1}$ with $ AC$. Prove that $ PQ$ is parallel to $ BC$.

2018 Estonia Team Selection Test, 5

Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.

2010 Romanian Master of Mathematics, 3

Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each $i=1, 2, 3, 4$, define $\omega_1$ to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo $4$ so $A_0=A_4, A_5=A_1$ and $A_6=A_2$). Let $T_i$ be the point of tangency of $\omega_i$ with the side $A_iA_{i+1}$. Prove that the lines $A_1A_2, A_3A_4$ and $T_2T_4$ are concurrent if and only if the lines $A_2A_3, A_4A_1$ and $T_1T_3$ are concurrent. [i]Pavel Kozhevnikov, Russia[/i]

2000 Macedonia National Olympiad, 1

Let $AB$ be a diameter of a circle with centre $O$, and $CD$ be a chord perpendicular to $AB$. A chord $AE$ intersects $CO$ at $M$, while $DE$ and $BC$ intersect at $N$. Prove that $CM:CO=CN:CB$.

2014 Contests, 2

Consider a convex pentagon circumscribed about a circle. We name the lines that connect vertices of the pentagon with the opposite points of tangency with the circle [i]gergonnians[/i]. (a) Prove that if four gergonnians are conncurrent, the all five of them are concurrent. (b) Prove that if there is a triple of gergonnians that are concurrent, then there is another triple of gergonnians that are concurrent.

2011 Croatia Team Selection Test, 3

Let $K$ and $L$ be the points on the semicircle with diameter $AB$. Denote intersection of $AK$ and $AL$ as $T$ and let $N$ be the point such that $N$ is on segment $AB$ and line $TN$ is perpendicular to $AB$. If $U$ is the intersection of perpendicular bisector of $AB$ an $KL$ and $V$ is a point on $KL$ such that angles $UAV$ and $UBV$ are equal. Prove that $NV$ is perpendicular to $KL$.

2009 Serbia National Math Olympiad, 6

Triangle ABC has incircle w centered as S that touches the sides BC,CA and AB at P,Q and R respectively. AB isn't equal AC, the lines QR and BC intersects at point M, the circle that passes through points B and C touches the circle w at point N, circumcircle of triangle MNP intersects with line AP at L (L isn't equal to P). Then prove that S,L and M lie on the same line

2000 IberoAmerican, 2

Let $S_1$ and $S_2$ be two circumferences, with centers $O_1$ and $O_2$ respectively, and secants on $M$ and $N$. The line $t$ is the common tangent to $S_1$ and $S_2$ closer to $M$. The points $A$ and $B$ are the intersection points of $t$ with $S_1$ and $S_2$, $C$ is the point such that $BC$ is a diameter of $S_2$, and $D$ the intersection point of the line $O_1O_2$ with the perpendicular line to $AM$ through $B$. Show that $M$, $D$ and $C$ are collinear.

1985 Federal Competition For Advanced Students, P2, 3

A line meets the lines containing sides $ BC,CA,AB$ of a triangle $ ABC$ at $ A_1,B_1,C_1,$ respectively. Points $ A_2,B_2,C_2$ are symmetric to $ A_1,B_1,C_1$ with respect to the midpoints of $ BC,CA,AB,$ respectively. Prove that $ A_2,B_2,$ and $ C_2$ are collinear.

1994 Polish MO Finals, 2

Let be given two parallel lines $k$ and $l$, and a circle not intersecting $k$. Consider a variable point $A$ on the line $k$. The two tangents from this point $A$ to the circle intersect the line $l$ at $B$ and $C$. Let $m$ be the line through the point $A$ and the midpoint of the segment $BC$. Prove that all the lines $m$ (as $A$ varies) have a common point.

2014 Dutch IMO TST, 2

Let $\triangle ABC$ be a triangle. Let $M$ be the midpoint of $BC$ and let $D$ be a point on the interior of side $AB$. The intersection of $AM$ and $CD$ is called $E$. Suppose that $|AD|=|DE|$. Prove that $|AB|=|CE|$.

2011 Iran MO (3rd Round), 3

In triangle $ABC$, $X$ and $Y$ are the tangency points of incircle (with center $I$) with sides $AB$ and $AC$ respectively. A tangent line to the circumcircle of triangle $ABC$ (with center $O$) at point $A$, intersects the extension of $BC$ at $D$. If $D,X$ and $Y$ are collinear then prove that $D,I$ and $O$ are also collinear. [i]proposed by Amirhossein Zabeti[/i]

2011 China Girls Math Olympiad, 8

The $A$-excircle $(O)$ of $\triangle ABC$ touches $BC$ at $M$. The points $D,E$ lie on the sides $AB,AC$ respectively such that $DE\parallel BC$. The incircle $(O_1)$ of $\triangle ADE$ touches $DE$ at $N$. If $BO_1\cap DO=F$ and $CO_1\cap EO=G$, prove that the midpoint of $FG$ lies on $MN$.

2010 Belarus Team Selection Test, 6.2

Given a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ meet at $E$ and the lines $AD$ and $BC$ meet at $F$. The midpoints of $AB$ and $CD$ are $G$ and $H$, respectively. Show that $EF$ is tangent at $E$ to the circle through the points $E$, $G$ and $H$. [i]Proposed by David Monk, United Kingdom[/i]

2013 ELMO Shortlist, 9

Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\omega$ whose diagonals meet at $F$. Lines $AB$ and $CD$ meet at $E$. Segment $EF$ intersects $\omega$ at $X$. Lines $BX$ and $CD$ meet at $M$, and lines $CX$ and $AB$ meet at $N$. Prove that $MN$ and $BC$ concur with the tangent to $\omega$ at $X$. [i]Proposed by Allen Liu[/i]

2000 Junior Balkan MO, 3

A half-circle of diameter $EF$ is placed on the side $BC$ of a triangle $ABC$ and it is tangent to the sides $AB$ and $AC$ in the points $Q$ and $P$ respectively. Prove that the intersection point $K$ between the lines $EP$ and $FQ$ lies on the altitude from $A$ of the triangle $ABC$. [i]Albania[/i]

2007 Germany Team Selection Test, 3

Circles $ w_{1}$ and $ w_{2}$ with centres $ O_{1}$ and $ O_{2}$ are externally tangent at point $ D$ and internally tangent to a circle $ w$ at points $ E$ and $ F$ respectively. Line $ t$ is the common tangent of $ w_{1}$ and $ w_{2}$ at $ D$. Let $ AB$ be the diameter of $ w$ perpendicular to $ t$, so that $ A, E, O_{1}$ are on the same side of $ t$. Prove that lines $ AO_{1}$, $ BO_{2}$, $ EF$ and $ t$ are concurrent.

2014 International Zhautykov Olympiad, 3

Four segments divide a convex quadrilateral into nine quadrilaterals. The points of intersections of these segments lie on the diagonals of the quadrilateral (see figure). It is known that the quadrilaterals 1, 2, 3, 4 admit inscribed circles. Prove that the quadrilateral 5 also has an inscribed circle. [asy] pair A,B,C,D,E,F,G,H,I,J,K,L; A=(-4.0,4.0);B=(-1.06,4.34);C=(-0.02,4.46);D=(4.14,4.93);E=(3.81,0.85);F=(3.7,-0.42); G=(3.49,-3.05);H=(1.37,-2.88);I=(-1.46,-2.65);J=(-2.91,-2.52);K=(-3.14,-1.03);L=(-3.61,1.64); draw(A--D);draw(D--G);draw(G--J);draw(J--A); draw(A--G);draw(D--J); draw(B--I);draw(C--H);draw(E--L);draw(F--K); pair R,S,T,U,V; R=(-2.52,2.56);S=(1.91,2.58);T=(-0.63,-0.11);U=(-2.37,-1.94);V=(2.38,-2.06); label("1",R,N);label("2",S,N);label("3",T,N);label("4",U,N);label("5",V,N); [/asy] [i]Proposed by Nairi M. Sedrakyan, Armenia[/i]