This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 232

2022 Germany Team Selection Test, 2

Let $ABCD$ be a cyclic quadrilateral whose sides have pairwise different lengths. Let $O$ be the circumcenter of $ABCD$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $B_1$ and $D_1$, respectively. Let $O_B$ be the center of the circle which passes through $B$ and is tangent to $\overline{AC}$ at $D_1$. Similarly, let $O_D$ be the center of the circle which passes through $D$ and is tangent to $\overline{AC}$ at $B_1$. Assume that $\overline{BD_1} \parallel \overline{DB_1}$. Prove that $O$ lies on the line $\overline{O_BO_D}$.

2005 IMO Shortlist, 6

Let $ABC$ be a triangle, and $M$ the midpoint of its side $BC$. Let $\gamma$ be the incircle of triangle $ABC$. The median $AM$ of triangle $ABC$ intersects the incircle $\gamma$ at two points $K$ and $L$. Let the lines passing through $K$ and $L$, parallel to $BC$, intersect the incircle $\gamma$ again in two points $X$ and $Y$. Let the lines $AX$ and $AY$ intersect $BC$ again at the points $P$ and $Q$. Prove that $BP = CQ$.

2002 Moldova National Olympiad, 12.6

Let A,B,C be three collinear points and a circle T(A,r). If M and N are two diametrical opposite variable points on T, Find locus geometrical of the intersection BM and CN.

2023 Indonesia TST, 3

Let $ABC$ be an acute triangle with altitude $\overline{AH}$, and let $P$ be a variable point such that the angle bisectors $k$ and $\ell$ of $\angle PBC$ and $\angle PCB$, respectively, meet on $\overline{AH}$. Let $k$ meet $\overline{AC}$ at $E$, $\ell$ meet $\overline{AB}$ at $F$, and $\overline{EF}$ meet $\overline{AH}$ at $Q$. Prove that as $P$ varies, line $PQ$ passes through a fixed point.

2014 ELMO Shortlist, 3

Let $A_1A_2A_3 \cdots A_{2013}$ be a cyclic $2013$-gon. Prove that for every point $P$ not the circumcenter of the $2013$-gon, there exists a point $Q\neq P$ such that $\frac{A_iP}{A_iQ}$ is constant for $i \in \{1, 2, 3, \cdots, 2013\}$. [i]Proposed by Robin Park[/i]

2015 ELMO Problems, 3

Let $\omega$ be a circle and $C$ a point outside it; distinct points $A$ and $B$ are selected on $\omega$ so that $\overline{CA}$ and $\overline{CB}$ are tangent to $\omega$. Let $X$ be the reflection of $A$ across the point $B$, and denote by $\gamma$ the circumcircle of triangle $BXC$. Suppose $\gamma$ and $\omega$ meet at $D \neq B$ and line $CD$ intersects $\omega$ at $E \neq D$. Prove that line $EX$ is tangent to the circle $\gamma$. [i]Proposed by David Stoner[/i]

2017 Romanian Master of Mathematics Shortlist, G1

Let $ABCD$ be a trapezium, $AD\parallel BC$, and let $E,F$ be points on the sides$AB$ and $CD$, respectively. The circumcircle of $AEF$ meets $AD$ again at $A_1$, and the circumcircle of $CEF$ meets $BC$ again at $C_1$. Prove that $A_1C_1,BD,EF$ are concurrent.

2012 Sharygin Geometry Olympiad, 19

Two circles with radii 1 meet in points $X, Y$, and the distance between these points also is equal to $1$. Point $C$ lies on the first circle, and lines $CA, CB$ are tangents to the second one. These tangents meet the first circle for the second time in points $B', A'$. Lines $AA'$ and $BB'$ meet in point $Z$. Find angle $XZY$.

2014 IMO Shortlist, G1

Let $P$ and $Q$ be on segment $BC$ of an acute triangle $ABC$ such that $\angle PAB=\angle BCA$ and $\angle CAQ=\angle ABC$. Let $M$ and $N$ be the points on $AP$ and $AQ$, respectively, such that $P$ is the midpoint of $AM$ and $Q$ is the midpoint of $AN$. Prove that the intersection of $BM$ and $CN$ is on the circumference of triangle $ABC$. [i]Proposed by Giorgi Arabidze, Georgia.[/i]

2012 Korea - Final Round, 2

For a triangle $ ABC $ which $ \angle B \ne 90^{\circ} $ and $ AB \ne AC $, define $ P_{ABC} $ as follows ; Let $ I $ be the incenter of triangle $ABC$, and let $ D, E, F $ be the intersection points with the incircle and segments $ BC, CA, AB $. Two lines $ AB $ and $ DI $ meet at $ S $ and let $ T $ be the intersection point of line $ DE $ and the line which is perpendicular with $ DF $ at $ F $. The line $ ST $ intersects line $ EF $ at $ R$. Now define $ P_{ABC} $ be one of the intersection points of the incircle and the circle with diameter $ IR $, which is located in other side with $ A $ about $ IR $. Now think of an isosceles triangle $ XYZ $ such that $ XZ = YZ > XY $. Let $ W $ be the point on the side $ YZ $ such that $ WY < XY $ and Let $ K = P_{YXW} $ and $ L = P_{ZXW} $. Prove that $ 2 KL \le XY $.

2011 China Girls Math Olympiad, 2

The diagonals $AC,BD$ of the quadrilateral $ABCD$ intersect at $E$. Let $M,N$ be the midpoints of $AB,CD$ respectively. Let the perpendicular bisectors of the segments $AB,CD$ meet at $F$. Suppose that $EF$ meets $BC,AD$ at $P,Q$ respectively. If $MF\cdot CD=NF\cdot AB$ and $DQ\cdot BP=AQ\cdot CP$, prove that $PQ\perp BC$.

2018 Thailand TST, 2

Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.

2014 Harvard-MIT Mathematics Tournament, 10

Let $ABC$ be a triangle with $AB = 13$, $BC = 14$, and $CA = 15$. Let $\Gamma$ be the circumcircle of $ABC$, let $O$ be its circumcenter, and let $M$ be the midpoint of minor arc $BC$. Circle $\omega_1$ is internally tangent to $\Gamma$ at $A$, and circle $\omega_2$, centered at $M$, is externally tangent to $\omega_1$ at a point $T$. Ray $AT$ meets segment $BC$ at point $S$, such that $BS - CS = \dfrac4{15}$. Find the radius of $\omega_2$

2004 Iran MO (3rd Round), 11

assume that ABC is acute traingle and AA' is median we extend it until it meets circumcircle at A". let $AP_a$ be a diameter of the circumcircle. the pependicular from A' to $AP_a$ meets the tangent to circumcircle at A" in the point $X_a$; we define $X_b,X_c$ similary . prove that $X_a,X_b,X_c$ are one a line.

2017 Morocco TST-, 3

Let $ABC$ be a triangle with circumcircle $\Gamma$ and incenter $I$ and let $M$ be the midpoint of $\overline{BC}$. The points $D$, $E$, $F$ are selected on sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ such that $\overline{ID} \perp \overline{BC}$, $\overline{IE}\perp \overline{AI}$, and $\overline{IF}\perp \overline{AI}$. Suppose that the circumcircle of $\triangle AEF$ intersects $\Gamma$ at a point $X$ other than $A$. Prove that lines $XD$ and $AM$ meet on $\Gamma$. [i]Proposed by Evan Chen, Taiwan[/i]

2005 China Team Selection Test, 1

Point $P$ lies inside triangle $ABC$. Let the projections of $P$ onto sides $BC$,$CA$,$AB$ be $D$, $E$, $F$ respectively. Let the projections from $A$ to the lines $BP$ and $CP$ be $M$ and $N$ respectively. Prove that $ME$, $NF$ and $BC$ are concurrent.

2010 IberoAmerican, 3

The circle $ \Gamma $ is inscribed to the scalene triangle $ABC$. $ \Gamma $ is tangent to the sides $BC, CA$ and $AB$ at $D, E$ and $F$ respectively. The line $EF$ intersects the line $BC$ at $G$. The circle of diameter $GD$ intersects $ \Gamma $ in $R$ ($ R\neq D $). Let $P$, $Q$ ($ P\neq R , Q\neq R $) be the intersections of $ \Gamma $ with $BR$ and $CR$, respectively. The lines $BQ$ and $CP$ intersects at $X$. The circumcircle of $CDE$ meets $QR$ at $M$, and the circumcircle of $BDF$ meet $PR$ at $N$. Prove that $PM$, $QN$ and $RX$ are concurrent. [i]Author: Arnoldo Aguilar, El Salvador[/i]

2014 Czech and Slovak Olympiad III A, 2

A segment $AB$ is given in (Euclidean) plane. Consider all triangles $XYZ$ such, that $X$ is an inner point of $AB$, triangles $XBY$ and $XZA$ are similar (in this order of vertices), and points $A, B, Y, Z$ lie on a circle in this order. Find the locus of midpoints of all such segments $YZ$. (Day 1, 2nd problem authors: Michal Rolínek, Jaroslav Švrček)

2018 Polish MO Finals, 5

An acute triangle $ABC$ in which $AB<AC$ is given. Points $E$ and $F$ are feet of its heights from $B$ and $C$, respectively. The line tangent in point $A$ to the circle escribed on $ABC$ crosses $BC$ at $P$. The line parallel to $BC$ that goes through point $A$ crosses $EF$ at $Q$. Prove $PQ$ is perpendicular to the median from $A$ of triangle $ABC$.

2005 Olympic Revenge, 2

Let $\Gamma$ be a circumference, and $A,B,C,D$ points of $\Gamma$ (in this order). $r$ is the tangent to $\Gamma$ at point A. $s$ is the tangent to $\Gamma$ at point D. Let $E=r \cap BC,F=s \cap BC$. Let $X=r \cap s,Y=AF \cap DE,Z=AB \cap CD$ Show that the points $X,Y,Z$ are collinear. Note: assume the existence of all above points.

1977 IMO Longlists, 55

Through a point $O$ on the diagonal $BD$ of a parallelogram $ABCD$, segments $MN$ parallel to $AB$, and $PQ$ parallel to $AD$, are drawn, with $M$ on $AD$, and $Q$ on $AB$. Prove that diagonals $AO,BP,DN$ (extended if necessary) will be concurrent.

2007 China Team Selection Test, 2

Let $ ABCD$ be the inscribed quadrilateral with the circumcircle $ \omega$.Let $ \zeta$ be another circle that internally tangent to $ \omega$ and to the lines $ BC$ and $ AD$ at points $ M,N$ respectively.Let $ I_1,I_2$ be the incenters of the $ \triangle ABC$ and $ \triangle ABD$.Prove that $ M,I_1,I_2,N$ are collinear.

2008 Costa Rica - Final Round, 2

Let $ ABC$ be a triangle and let $ P$ be a point on the angle bisector $ AD$, with $ D$ on $ BC$. Let $ E$, $ F$ and $ G$ be the intersections of $ AP$, $ BP$ and $ CP$ with the circumcircle of the triangle, respectively. Let $ H$ be the intersection of $ EF$ and $ AC$, and let $ I$ be the intersection of $ EG$ and $ AB$. Determine the geometric place of the intersection of $ BH$ and $ CI$ when $ P$ varies.

2019 Philippine TST, 1

Let $n\geqslant 3$ be an integer. Prove that there exists a set $S$ of $2n$ positive integers satisfying the following property: For every $m=2,3,...,n$ the set $S$ can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality $m$.

2004 Baltic Way, 16

Through a point $P$ exterior to a given circle pass a secant and a tangent to the circle. The secant intersects the circle at $A$ and $B$, and the tangent touches the circle at $C$ on the same side of the diameter through $P$ as the points $A$ and $B$. The projection of the point $C$ on the diameter is called $Q$. Prove that the line $QC$ bisects the angle $\angle AQB$.