This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 232

2014 Korea Junior Math Olympiad, 7

In a parallelogram $\Box ABCD$ $(AB < BC)$ The incircle of $\triangle ABC$ meets $\overline {BC}$ and $\overline {CA}$ at $P, Q$. The incircle of $\triangle ACD$ and $\overline {CD}$ meets at $R$. Let $S$ = $PQ$ $\cap$ $AD$ $U$ = $AR$ $\cap$ $CS$ $T$, a point on $\overline {BC}$ such that $\overline {AB} = \overline {BT}$ Prove that $AT, BU, PQ$ are concurrent

2009 Costa Rica - Final Round, 6

Let $ \Delta ABC$ with incircle $ \Gamma$, let $ D, E$ and $ F$ the tangency points of $ \Gamma$ with sides $ BC, AC$ and $ AB$, respectively and let $ P$ the intersection point of $ AD$ with $ \Gamma$. $ a)$ Prove that $ BC, EF$ and the straight line tangent to $ \Gamma$ for $ P$ concur at a point $ A'$. $ b)$ Define $ B'$ and $ C'$ in an anologous way than $ A'$. Prove that $ A'\minus{}B'\minus{}C'$

2002 Iran Team Selection Test, 13

Let $ABC$ be a triangle. The incircle of triangle $ABC$ touches the side $BC$ at $A^{\prime}$, and the line $AA^{\prime}$ meets the incircle again at a point $P$. Let the lines $CP$ and $BP$ meet the incircle of triangle $ABC$ again at $N$ and $M$, respectively. Prove that the lines $AA^{\prime}$, $BN$ and $CM$ are concurrent.

2017 IMO Shortlist, G3

Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.

2012 USA Team Selection Test, 2

In cyclic quadrilateral $ABCD$, diagonals $AC$ and $BD$ intersect at $P$. Let $E$ and $F$ be the respective feet of the perpendiculars from $P$ to lines $AB$ and $CD$. Segments $BF$ and $CE$ meet at $Q$. Prove that lines $PQ$ and $EF$ are perpendicular to each other.

2017 Taiwan TST Round 3, 4

Let $ABC$ be a triangle with circumcircle $\Gamma$ and incenter $I$ and let $M$ be the midpoint of $\overline{BC}$. The points $D$, $E$, $F$ are selected on sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ such that $\overline{ID} \perp \overline{BC}$, $\overline{IE}\perp \overline{AI}$, and $\overline{IF}\perp \overline{AI}$. Suppose that the circumcircle of $\triangle AEF$ intersects $\Gamma$ at a point $X$ other than $A$. Prove that lines $XD$ and $AM$ meet on $\Gamma$. [i]Proposed by Evan Chen, Taiwan[/i]

2018 Romania Team Selection Tests, 1

Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.

2011 China Girls Math Olympiad, 2

The diagonals $AC,BD$ of the quadrilateral $ABCD$ intersect at $E$. Let $M,N$ be the midpoints of $AB,CD$ respectively. Let the perpendicular bisectors of the segments $AB,CD$ meet at $F$. Suppose that $EF$ meets $BC,AD$ at $P,Q$ respectively. If $MF\cdot CD=NF\cdot AB$ and $DQ\cdot BP=AQ\cdot CP$, prove that $PQ\perp BC$.

2015 ELMO Problems, 3

Let $\omega$ be a circle and $C$ a point outside it; distinct points $A$ and $B$ are selected on $\omega$ so that $\overline{CA}$ and $\overline{CB}$ are tangent to $\omega$. Let $X$ be the reflection of $A$ across the point $B$, and denote by $\gamma$ the circumcircle of triangle $BXC$. Suppose $\gamma$ and $\omega$ meet at $D \neq B$ and line $CD$ intersects $\omega$ at $E \neq D$. Prove that line $EX$ is tangent to the circle $\gamma$. [i]Proposed by David Stoner[/i]

2000 Junior Balkan MO, 3

A half-circle of diameter $EF$ is placed on the side $BC$ of a triangle $ABC$ and it is tangent to the sides $AB$ and $AC$ in the points $Q$ and $P$ respectively. Prove that the intersection point $K$ between the lines $EP$ and $FQ$ lies on the altitude from $A$ of the triangle $ABC$. [i]Albania[/i]

2006 Balkan MO, 2

Let $ABC$ be a triangle and $m$ a line which intersects the sides $AB$ and $AC$ at interior points $D$ and $F$, respectively, and intersects the line $BC$ at a point $E$ such that $C$ lies between $B$ and $E$. The parallel lines from the points $A$, $B$, $C$ to the line $m$ intersect the circumcircle of triangle $ABC$ at the points $A_1$, $B_1$ and $C_1$, respectively (apart from $A$, $B$, $C$). Prove that the lines $A_1E$ , $B_1F$ and $C_1D$ pass through the same point. [i]Greece[/i]

2012 Indonesia TST, 3

Given a cyclic quadrilateral $ABCD$ with the circumcenter $O$, with $BC$ and $AD$ not parallel. Let $P$ be the intersection of $AC$ and $BD$. Let $E$ be the intersection of the rays $AB$ and $DC$. Let $I$ be the incenter of $EBC$ and the incircle of $EBC$ touches $BC$ at $T_1$. Let $J$ be the excenter of $EAD$ that touches $AD$ and the excircle of $EAD$ that touches $AD$ touches $AD$ at $T_2$. Let $Q$ be the intersection between $IT_1$ and $JT_2$. Prove that $O,P,Q$ are collinear.

2008 Tuymaada Olympiad, 6

Let $ ABCD$ be an isosceles trapezoid with $ AD \parallel BC$. Its diagonals $ AC$ and $ BD$ intersect at point $ M$. Points $ X$ and $ Y$ on the segment $ AB$ are such that $ AX \equal{} AM$, $ BY \equal{} BM$. Let $ Z$ be the midpoint of $ XY$ and $ N$ is the point of intersection of the segments $ XD$ and $ YC$. Prove that the line $ ZN$ is parallel to the bases of the trapezoid. [i]Author: A. Akopyan, A. Myakishev[/i]

2006 CentroAmerican, 6

Let $ABCD$ be a convex quadrilateral. $I=AC\cap BD$, and $E$, $H$, $F$ and $G$ are points on $AB$, $BC$, $CD$ and $DA$ respectively, such that $EF \cap GH= I$. If $M=EG \cap AC$, $N=HF \cap AC$, show that \[\frac{AM}{IM}\cdot \frac{IN}{CN}=\frac{IA}{IC}.\]

2018 Azerbaijan BMO TST, 4

Let $ABC$ be an acute angled triangle with orthocenter $H$. centroid $G$ and circumcircle $\omega$. Let $D$ and $M$ respectively be the intersection of lines $AH$ and $AG$ with side $BC$. Rays $MH$ and $DG$ interect $ \omega$ again at $P$ and $Q$ respectively. Prove that $PD$ and $QM$ intersect on $\omega$.

2012 ELMO Shortlist, 10

Let $A_1A_2A_3A_4A_5A_6A_7A_8$ be a cyclic octagon. Let $B_i$ by the intersection of $A_iA_{i+1}$ and $A_{i+3}A_{i+4}$. (Take $A_9 = A_1$, $A_{10} = A_2$, etc.) Prove that $B_1, B_2, \ldots , B_8$ lie on a conic. [i]David Yang.[/i]

May Olympiad L2 - geometry, 2012.3

Given Triangle $ABC$, $\angle B= 2 \angle C$, and $\angle A>90^\circ$. Let $M$ be midpoint of $BC$. Perpendicular of $AC$ at $C$ intersects $AB$ at $D$. Show $\angle AMB = \angle DMC$ [hide]If possible, don't use projective geometry[/hide]

2009 Argentina Iberoamerican TST, 3

Let $ ABC$ be an isosceles triangle with $ AC \equal{} BC.$ Its incircle touches $ AB$ in $ D$ and $ BC$ in $ E.$ A line distinct of $ AE$ goes through $ A$ and intersects the incircle in $ F$ and $ G.$ Line $ AB$ intersects line $ EF$ and $ EG$ in $ K$ and $ L,$ respectively. Prove that $ DK \equal{} DL.$

2019 USA TSTST, 9

Let $ABC$ be a triangle with incenter $I$. Points $K$ and $L$ are chosen on segment $BC$ such that the incircles of $\triangle ABK$ and $\triangle ABL$ are tangent at $P$, and the incircles of $\triangle ACK$ and $\triangle ACL$ are tangent at $Q$. Prove that $IP=IQ$. [i]Ankan Bhattacharya[/i]

2012 Sharygin Geometry Olympiad, 19

Two circles with radii 1 meet in points $X, Y$, and the distance between these points also is equal to $1$. Point $C$ lies on the first circle, and lines $CA, CB$ are tangents to the second one. These tangents meet the first circle for the second time in points $B', A'$. Lines $AA'$ and $BB'$ meet in point $Z$. Find angle $XZY$.

2016 IMO Shortlist, G2

Let $ABC$ be a triangle with circumcircle $\Gamma$ and incenter $I$ and let $M$ be the midpoint of $\overline{BC}$. The points $D$, $E$, $F$ are selected on sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ such that $\overline{ID} \perp \overline{BC}$, $\overline{IE}\perp \overline{AI}$, and $\overline{IF}\perp \overline{AI}$. Suppose that the circumcircle of $\triangle AEF$ intersects $\Gamma$ at a point $X$ other than $A$. Prove that lines $XD$ and $AM$ meet on $\Gamma$. [i]Proposed by Evan Chen, Taiwan[/i]

2008 China Team Selection Test, 1

Let $ ABC$ be a triangle, let $ AB > AC$. Its incircle touches side $ BC$ at point $ E$. Point $ D$ is the second intersection of the incircle with segment $ AE$ (different from $ E$). Point $ F$ (different from $ E$) is taken on segment $ AE$ such that $ CE \equal{} CF$. The ray $ CF$ meets $ BD$ at point $ G$. Show that $ CF \equal{} FG$.

2014 Contests, 1

Let $ABC$ an acute triangle and $\Gamma$ its circumcircle. The bisector of $BAC$ intersects $\Gamma$ at $M\neq A$. A line $r$ parallel to $BC$ intersects $AC$ at $X$ and $AB$ at $Y$. Also, $MX$ and $MY$ intersect $\Gamma$ again at $S$ and $T$, respectively. If $XY$ and $ST$ intersect at $P$, prove that $PA$ is tangent to $\Gamma$.

2013 Sharygin Geometry Olympiad, 7

Let $BD$ be a bisector of triangle $ABC$. Points $I_a$, $I_c$ are the incenters of triangles $ABD$, $CBD$ respectively. The line $I_aI_c$ meets $AC$ in point $Q$. Prove that $\angle DBQ = 90^\circ$.

2017 Romania Team Selection Test, P1

Let $ABCD$ be a trapezium, $AD\parallel BC$, and let $E,F$ be points on the sides$AB$ and $CD$, respectively. The circumcircle of $AEF$ meets $AD$ again at $A_1$, and the circumcircle of $CEF$ meets $BC$ again at $C_1$. Prove that $A_1C_1,BD,EF$ are concurrent.