This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 242

2009 AMC 10, 24

Three distinct vertices of a cube are chosen at random. What is the probability that the plane determined by these three vertices contains points inside the cube? $ \textbf{(A)}\ \frac{1}{4} \qquad \textbf{(B)}\ \frac{3}{8} \qquad \textbf{(C)}\ \frac{4}{7} \qquad \textbf{(D)}\ \frac{5}{7} \qquad \textbf{(E)}\ \frac{3}{4}$

2016 SDMO (Middle School), 4

There is an infinitely tall tetrahedral stack of spheres where each row of the tetrahedron consists of a triangular arrangement of spheres, as shown below. There is $1$ sphere in the top row (which we will call row $0$), $3$ spheres in row $1$, $6$ spheres in row $2$, $10$ spheres in row $3$, etc. The top-most sphere in row $0$ is assigned the number $1$. We then assign each other sphere the sum of the number(s) assigned to the sphere(s) which touch it in the row directly above it. Find a simplified expression in terms of $n$ for the sum of the numbers assigned to each sphere from row $0$ to row $n$. [asy] import three; import solids; size(8cm); //currentprojection = perspective(1, 1, 10); triple backright = (-2, 0, 0), backleft = (-1, -sqrt(3), 0), backup = (-1, -sqrt(3) / 3, 2 * sqrt(6) / 3); draw(shift(2 * backleft) * surface(sphere(1,20)), white); //2 draw(shift(backleft + backright) * surface(sphere(1,20)), white); //2 draw(shift(2 * backright) * surface(sphere(1,20)), white); //3 draw(shift(backup + backleft) * surface(sphere(1,20)), white); draw(shift(backup + backright) * surface(sphere(1,20)), white); draw(shift(2 * backup) * surface(sphere(1,20)), white); draw(shift(backleft) * surface(sphere(1,20)), white); draw(shift(backright) * surface(sphere(1,20)), white); draw(shift(backup) * surface(sphere(1,20)), white); draw(surface(sphere(1,20)), white); label("Row 0", 2 * backup, 15 * dir(20)); label("Row 1", backup, 25 * dir(20)); label("Row 2", O, 35 * dir(20)); dot(-backup); dot(-7 * backup / 8); dot(-6 * backup / 8); dot((backleft - backup) + backleft * 2); dot(5 * (backleft - backup) / 4 + backleft * 2); dot(6 * (backleft - backup) / 4 + backleft * 2); dot((backright - backup) + backright * 2); dot(5 * (backright - backup) / 4 + backright * 2); dot(6 * (backright - backup) / 4 + backright * 2); [/asy]

IV Soros Olympiad 1997 - 98 (Russia), 11.9

Cut pyramid $ABCD$ into $8$ equal and similar pyramids, if: a) $AB = BC = CD$, $\angle ABC =\angle BCD = 90^o$, dihedral angle at edge $BC$ is right b) all plane angles at vertex $B$ are right and $AB = BC = BD\sqrt2$. Note. Whether there are other types of triangular pyramids that can be cut into any number similar to the original pyramids (their number is not necessarily $8$ and the pyramids are not necessarily equal to each other) is currently unknown

III Soros Olympiad 1996 - 97 (Russia), 10.2

Let $ABCD$ be a regular triangular pyramid with base $ABC$ (this means that $ABC$ is a regular triangle, and edges $AD$, $BD$ and $CD$ are equal) and plane angles at the opposite vertex equal to $a$. A plane parallel to $ABC$ intersects $AD$, $BD$ and $CD$, respectively, at points $A_1$, $B_1$ and $C_1$. The surface of the polyhedron $ABCA_1B_1C_1$ is cut along five edges: $A_1B_1$, $B_1C_1$, $C_1C$, $CA$ and $AB$, after which this surface is turned onto a plane. At what values of $a$ will the resulting scan necessarily cover itself?

2006 Austrian-Polish Competition, 10

Let $ABCDS$ be a (not neccessarily straight) pyramid with a rectangular base $ABCD$ and acute triangular faces $ABS,BCS,CDS,DAS$. We consider all cuboids which are inscribed inside the pyramid with its base being in the plane $ABCD$ and its upper vertexes are in the triangular faces (one in each). Find the locus of the midpoints of these cuboids.

1995 AIME Problems, 12

Pyramid $OABCD$ has square base $ABCD,$ congruent edges $\overline{OA}, \overline{OB}, \overline{OC},$ and $\overline{OD},$ and $\angle AOB=45^\circ.$ Let $\theta$ be the measure of the dihedral angle formed by faces $OAB$ and $OBC.$ Given that $\cos \theta=m+\sqrt{n},$ where $m$ and $n$ are integers, find $m+n.$

1997 Romania Team Selection Test, 1

Let $VA_1A_2\ldots A_n$ be a pyramid, where $n\ge 4$. A plane $\Pi$ intersects the edges $VA_1,VA_2,\ldots, VA_n$ at the points $B_1,B_2,\ldots,B_n$ respectively such that the polygons $A_1A_2\ldots A_n$ and $B_1B_2\ldots B_n$ are similar. Prove that the plane $\Pi$ is parallel to the plane containing the base $A_1A_2\ldots A_n$. [i]Laurentiu Panaitopol[/i]

1977 IMO Longlists, 45

Let $E$ be a finite set of points such that $E$ is not contained in a plane and no three points of $E$ are collinear. Show that at least one of the following alternatives holds: (i) $E$ contains five points that are vertices of a convex pyramid having no other points in common with $E;$ (ii) some plane contains exactly three points from $E.$

1950 Moscow Mathematical Olympiad, 179

Two triangular pyramids have common base. One pyramid contains the other. Can the sum of the lengths of the edges of the inner pyramid be longer than that of the outer one?

IV Soros Olympiad 1997 - 98 (Russia), 10.5

At the base of the triangular pyramid $ABCD$ lies a regular triangle $ABC$ such that $AD = BC$. All plane angles at vertex $B$ are equal to each other. What might these angles be equal to?

2002 All-Russian Olympiad Regional Round, 11.2

The altitude of a quadrangular pyramid $SABCD$ passes through the intersection point of the diagonals of its base $ABCD$. From the tops of the base perpendiculars $AA_1$, $BB_1$, $CC_1$, $DD_1$ are dropped onto lines $SC$, $SD,$ $SA$ and $SB$ respectively. It turned out that the points $S$, $A_1$, $B_1$, $C_1$, $D_1$ are different and lie on the same sphere. Prove that lines $AA_1$, $ BB_1$, $CC_1$, $DD_1$ pass through one point.

2007 Princeton University Math Competition, 9

There are four spheres each of radius $1$ whose centers form a triangular pyramid where each side has length $2$. There is a 5th sphere which touches all four other spheres and has radius less than $1$. What is its radius?

1983 AIME Problems, 11

The solid shown has a square base of side length $s$. The upper edge is parallel to the base and has length $2s$. All other edges have length $s$. Given that $s = 6 \sqrt{2}$, what is the volume of the solid? [asy] import three; size(170); pathpen = black+linewidth(0.65); pointpen = black; currentprojection = perspective(30,-20,10); real s = 6 * 2^.5; triple A=(0,0,0),B=(s,0,0),C=(s,s,0),D=(0,s,0),E=(-s/2,s/2,6),F=(3*s/2,s/2,6); draw(F--B--C--F--E--A--B); draw(A--D--E, dashed); draw(D--C, dashed); label("$2s$", (s/2, s/2, 6), N); label("$s$", (s/2, 0, 0), SW); [/asy]

2018 Costa Rica - Final Round, 6

The four faces of a right triangular pyramid are equilateral triangles whose edge measures $3$ dm. Suppose the pyramid is hollow, resting on one of its faces at a horizontal surface (see attached figure) and that there is $2$ dm$^3$ of water inside. Determine the height that the liquid reaches inside the pyramid. [img]https://cdn.artofproblemsolving.com/attachments/0/7/6cd6e1077620371e56ed57d19fd3d05a58904e.png[/img]

1980 Bulgaria National Olympiad, Problem 6

Show that if all lateral edges of a pentagonal pyramid are of equal length and all the angles between neighboring lateral faces are equal, then the pyramid is regular.

2012 NIMO Problems, 6

A square is called [i]proper[/i] if its sides are parallel to the coordinate axes. Point $P$ is randomly selected inside a proper square $S$ with side length 2012. Denote by $T$ the largest proper square that lies within $S$ and has $P$ on its perimeter, and denote by $a$ the expected value of the side length of $T$. Compute $\lfloor a \rfloor$, the greatest integer less than or equal to $a$. [i]Proposed by Lewis Chen[/i]

2011 Purple Comet Problems, 15

A pyramid has a base which is an equilateral triangle with side length $300$ centimeters. The vertex of the pyramid is $100$ centimeters above the center of the triangular base. A mouse starts at a corner of the base of the pyramid and walks up the edge of the pyramid toward the vertex at the top. When the mouse has walked a distance of $134$ centimeters, how many centimeters above the base of the pyramid is the mouse?

1995 National High School Mathematics League, 6

$O$ is the center of the bottom surface of regular triangular pyramid $P-ABC$. A plane passes $O$ intersects line segment $PC$ at $S$, intersects the extended line of $PA,PB$ at $Q,R$, then $\frac{1}{|PQ|}+\frac{1}{|PR|}+\frac{1}{|PS|}$ $\text{(A)}$ has a maximum value, but no minumum value $\text{(B)}$ has a minumum value, but no maximum value $\text{(C)}$ has both minumum value and maximum value (different) $\text{(D)}$ is a fixed value

2007 Sharygin Geometry Olympiad, 20

The base of a pyramid is a regular triangle having side of size $1$. Two of three angles at the vertex of the pyramid are right. Find the maximum value of the volume of the pyramid.

2002 District Olympiad, 3

Consider the regular pyramid $VABCD$ with the vertex in $V$ which measures the angle formed by two opposite lateral edges is $45^o$. The points $M,N,P$ are respectively, the projections of the point $A$ on the line $VC$, the symmetric of the point $M$ with respect to the plane $(VBD)$ and the symmetric of the point $N$ with respect to $O$. ($O$ is the center of the base of the pyramid.) a) Show that the polyhedron $MDNBP$ is a regular pyramid. b) Determine the measure of the angle between the line $ND$ and the plane $(ABC) $

1935 Moscow Mathematical Olympiad, 012

The unfolding of the lateral surface of a cone is a sector of angle $120^o$. The angles at the base of a pyramid constitute an arithmetic progression with a difference of $15^o$. The pyramid is inscribed in the cone. Consider a lateral face of the pyramid with the smallest area. Find the angle $\alpha$ between the plane of this face and the base.

2011 AMC 10, 22

A pyramid has a square base with sides of length 1 and has lateral faces that are equilateral triangles. A cube is placed within the pyramid so that one face is on the base of the pyramid and its opposite face has all its edges on the lateral faces of the pyramid. What is the volume of this cube? $ \textbf{(A)}\ 5\sqrt{2}-7 \qquad \textbf{(B)}\ 7-4\sqrt{3} \qquad \textbf{(C)}\ \frac{2\sqrt{2}}{27} \qquad \textbf{(D)}\ \frac{\sqrt{2}}{9} \qquad \textbf{(E)}\ \frac{\sqrt{3}}{9} $

2011 Romania National Olympiad, 3

Let $VABC$ be a regular triangular pyramid with base $ABC$, of center $O$. Points $I$ and $H$ are the center of the inscribed circle, respectively the orthocenter $\vartriangle VBC$. Knowing that $AH = 3 OI$, determine the measure of the angle between the lateral edge of the pyramid and the plane of the base.

1965 Kurschak Competition, 3

A pyramid has square base and equal sides. It is cut into two parts by a plane parallel to the base. The lower part (which has square top and square base) is such that the circumcircle of the base is smaller than the circumcircles of the lateral faces. Show that the shortest path on the surface joining the two endpoints of a spatial diagonal lies entirely on the lateral faces. [img]https://cdn.artofproblemsolving.com/attachments/c/8/170bec826d5e40308cfd7360725d2aba250bf6.png[/img]

1948 Moscow Mathematical Olympiad, 146

Consider two triangular pyramids $ABCD$ and $A'BCD$, with a common base $BCD$, and such that $A'$ is inside $ABCD$. Prove that the sum of planar angles at vertex $A'$ of pyramid $A'BCD$ is greater than the sum of planar angles at vertex $A$ of pyramid $ABCD$.