Found problems: 216
2006 Turkey Team Selection Test, 1
Find the maximum value for the area of a heptagon with all vertices on a circle and two diagonals perpendicular.
2005 AMC 10, 10
In $ \triangle ABC$, we have $ AC \equal{} BC \equal{} 7$ and $ AB \equal{} 2$. Suppose that $ D$ is a point on line $ AB$ such that $ B$ lies between $ A$ and $ D$ and $ CD \equal{} 8$. What is $ BD$?
$ \textbf{(A)}\ 3\qquad
\textbf{(B)}\ 2 \sqrt {3}\qquad
\textbf{(C)}\ 4\qquad
\textbf{(D)}\ 5\qquad
\textbf{(E)}\ 4 \sqrt {2}$
2005 AIME Problems, 8
Circles $C_1$ and $C_2$ are externally tangent, and they are both internally tangent to circle $C_3$. The radii of $C_1$ and $C_2$ are $4$ and $10$, respectively, and the centers of the three circles are all collinear. A chord of $C_3$ is also a common external tangent of $C_1$ and $C_2$. Given that the length of the chord is $\frac{m\sqrt{n}}{p}$ where $m,n,$ and $p$ are positive integers, $m$ and $p$ are relatively prime, and $n$ is not divisible by the square of any prime, find $m+n+p$.
2011 Purple Comet Problems, 28
Pictured below is part of a large circle with radius $30$. There is a chain of three circles with radius $3$, each internally tangent to the large circle and each tangent to its neighbors in the chain. There are two circles with radius $2$ each tangent to two of the radius $3$ circles. The distance between the centers of the two circles with radius $2$ can be written as $\textstyle\frac{a\sqrt b-c}d$, where $a,b,c,$ and $d$ are positive integers, $c$ and $d$ are relatively prime, and $b$ is not divisible by the square of any prime. Find $a+b+c+d$.
[asy]
size(200);
defaultpen(linewidth(0.5));
real r=aCos(79/81);
pair x=dir(270+r)*27,y=dir(270-r)*27;
draw(arc(origin,30,210,330));
draw(circle(x,3)^^circle(y,3)^^circle((0,-27),3));
path arcl=arc(y,5,0,180), arcc=arc((0,-27),5,0,180), arcr=arc(x,5,0,180);
pair centl=intersectionpoint(arcl,arcc), centr=intersectionpoint(arcc,arcr);
draw(circle(centl,2)^^circle(centr,2));
dot(x^^y^^(0,-27)^^centl^^centr,linewidth(2));
[/asy]
2008 National Olympiad First Round, 5
A triangle with sides $a,b,c$ is called a good triangle if $a^2,b^2,c^2$ can form a triangle. How many of below triangles are good?
(i) $40^{\circ}, 60^{\circ}, 80^{\circ}$
(ii) $10^{\circ}, 10^{\circ}, 160^{\circ}$
(iii) $110^{\circ}, 35^{\circ}, 35^{\circ}$
(iv) $50^{\circ}, 30^{\circ}, 100^{\circ}$
(v) $90^{\circ}, 40^{\circ}, 50^{\circ}$
(vi) $80^{\circ}, 20^{\circ}, 80^{\circ}$
$
\textbf{(A)}\ 1
\qquad\textbf{(B)}\ 2
\qquad\textbf{(C)}\ 3
\qquad\textbf{(D)}\ 4
\qquad\textbf{(E)}\ 5
$
2013 Online Math Open Problems, 26
In triangle $ABC$, $F$ is on segment $AB$ such that $CF$ bisects $\angle ACB$. Points $D$ and $E$ are on line $CF$ such that lines $AD,BE$ are perpendicular to $CF$. $M$ is the midpoint of $AB$. If $ME=13$, $AD=15$, and $BE=25$, find $AC+CB$.
[i]Ray Li[/i]
2014 AIME Problems, 1
The $8$ eyelets for the lace of a sneaker all lie on a rectangle, four equally spaced on each of the longer sides. The rectangle has a width of $50$ mm and a length of $80$ mm. There is one eyelet at each vertex of the rectangle. The lace itself must pass between the vertex eyelets along a width side of the rectangle and then crisscross between successive eyelets until it reaches the two eyelets at the other width side of the rectrangle as shown. After passing through these final eyelets, each of the ends of the lace must extend at least $200$ mm farther to allow a knot to be tied. Find the minimum length of the lace in millimeters.
[asy]
size(200);
defaultpen(linewidth(0.7));
path laceL=(-20,-30)..tension 0.75 ..(-90,-135)..(-102,-147)..(-152,-150)..tension 2 ..(-155,-140)..(-135,-40)..(-50,-4)..tension 0.8 ..origin;
path laceR=reflect((75,0),(75,-240))*laceL;
draw(origin--(0,-240)--(150,-240)--(150,0)--cycle,gray);
for(int i=0;i<=3;i=i+1)
{
path circ1=circle((0,-80*i),5),circ2=circle((150,-80*i),5);
unfill(circ1); draw(circ1);
unfill(circ2); draw(circ2);
}
draw(laceL--(150,-80)--(0,-160)--(150,-240)--(0,-240)--(150,-160)--(0,-80)--(150,0)^^laceR,linewidth(1));[/asy]
2011 AMC 10, 14
A rectangular parking lot has a diagonal of $25$ meters and an area of $168$ square meters. In meters, what is the perimeter of the parking lot?
$ \textbf{(A)}\ 52 \qquad
\textbf{(B)}\ 58 \qquad
\textbf{(C)}\ 62 \qquad
\textbf{(D)}\ 68 \qquad
\textbf{(E)}\ 70 $
2011 Purple Comet Problems, 14
The lengths of the three sides of a right triangle form a geometric sequence. The sine of the smallest of the angles in the triangle is $\tfrac{m+\sqrt{n}}{k}$ where $m$, $n$, and $k$ are integers, and $k$ is not divisible by the square of any prime. Find $m + n + k$.
2014 Contests, 1
The $8$ eyelets for the lace of a sneaker all lie on a rectangle, four equally spaced on each of the longer sides. The rectangle has a width of $50$ mm and a length of $80$ mm. There is one eyelet at each vertex of the rectangle. The lace itself must pass between the vertex eyelets along a width side of the rectangle and then crisscross between successive eyelets until it reaches the two eyelets at the other width side of the rectrangle as shown. After passing through these final eyelets, each of the ends of the lace must extend at least $200$ mm farther to allow a knot to be tied. Find the minimum length of the lace in millimeters.
[asy]
size(200);
defaultpen(linewidth(0.7));
path laceL=(-20,-30)..tension 0.75 ..(-90,-135)..(-102,-147)..(-152,-150)..tension 2 ..(-155,-140)..(-135,-40)..(-50,-4)..tension 0.8 ..origin;
path laceR=reflect((75,0),(75,-240))*laceL;
draw(origin--(0,-240)--(150,-240)--(150,0)--cycle,gray);
for(int i=0;i<=3;i=i+1)
{
path circ1=circle((0,-80*i),5),circ2=circle((150,-80*i),5);
unfill(circ1); draw(circ1);
unfill(circ2); draw(circ2);
}
draw(laceL--(150,-80)--(0,-160)--(150,-240)--(0,-240)--(150,-160)--(0,-80)--(150,0)^^laceR,linewidth(1));[/asy]
1993 India Regional Mathematical Olympiad, 1
Let $ABC$ be an acute angled triangle and $CD$ be the altitude through $C$. If $AB = 8$ and $CD = 6$, find the distance between the midpoints of $AD$ and $BC$.
2011 AIME Problems, 14
Let $A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8$ be a regular octagon. Let $M_1$, $M_3$, $M_5$, and $M_7$ be the midpoints of sides $\overline{A_1 A_2}$, $\overline{A_3 A_4}$, $\overline{A_5 A_6}$, and $\overline{A_7 A_8}$, respectively. For $i = 1, 3, 5, 7$, ray $R_i$ is constructed from $M_i$ towards the interior of the octagon such that $R_1 \perp R_3$, $R_3 \perp R_5$, $R_5 \perp R_7$, and $R_7 \perp R_1$. Pairs of rays $R_1$ and $R_3$, $R_3$ and $R_5$, $R_5$ and $R_7$, and $R_7$ and $R_1$ meet at $B_1$, $B_3$, $B_5$, $B_7$ respectively. If $B_1 B_3 = A_1 A_2$, then $\cos 2 \angle A_3 M_3 B_1$ can be written in the form $m - \sqrt{n}$, where $m$ and $n$ are positive integers. Find $m + n$.
2004 Paraguay Mathematical Olympiad, 2
Determine for what values of $x$ the expressions $2x + 2$,$x + 4$, $x + 2$ can represent the sidelengths of a right triangle.
2010 Romania National Olympiad, 3
Let $VABCD$ be a regular pyramid, having the square base $ABCD$. Suppose that on the line $AC$ lies a point $M$ such that $VM=MB$ and $(VMB)\perp (VAB)$. Prove that $4AM=3AC$.
[i]Mircea Fianu[/i]
2009 AIME Problems, 10
Four lighthouses are located at points $ A$, $ B$, $ C$, and $ D$. The lighthouse at $ A$ is $ 5$ kilometers from the lighthouse at $ B$, the lighthouse at $ B$ is $ 12$ kilometers from the lighthouse at $ C$, and the lighthouse at $ A$ is $ 13$ kilometers from the lighthouse at $ C$. To an observer at $ A$, the angle determined by the lights at $ B$ and $ D$ and the angle determined by the lights at $ C$ and $ D$ are equal. To an observer at $ C$, the angle determined by the lights at $ A$ and $ B$ and the angle determined by the lights at $ D$ and $ B$ are equal. The number of kilometers from $ A$ to $ D$ is given by $ \displaystyle\frac{p\sqrt{r}}{q}$, where $ p$, $ q$, and $ r$ are relatively prime positive integers, and $ r$ is not divisible by the square of any prime. Find $ p\plus{}q\plus{}r$,
2011 Canadian Open Math Challenge, 7
In the figure, BC is a diameter of the circle, where $BC=\sqrt{901}, BD=1$, and $DA=16$. If $EC=x$, what is the value of x?
[asy]size(2inch);
pair O,A,B,C,D,E;
B=(0,0);
O=(2,0);
C=(4,0);
D=(.333,1.333);
A=(.75,2.67);
E=(1.8,2);
draw(Arc(O,2,0,360));
draw(B--C--A--B);
label("$A$",A,N);
label("$B$",B,W);
label("$C$",C,E);
label("$D$",D,W);
label("$E$",E,N);
label("Figure not drawn to scale",(2,-2.5),S);
[/asy]
1951 AMC 12/AHSME, 49
The medians of a right triangle which are drawn from the vertices of the acute angles are $ 5$ and $ \sqrt {40}$. The value of the hypotenuse is:
$ \textbf{(A)}\ 10 \qquad\textbf{(B)}\ 2\sqrt {40} \qquad\textbf{(C)}\ \sqrt {13} \qquad\textbf{(D)}\ 2\sqrt {13} \qquad\textbf{(E)}\ \text{none of these}$
2009 Math Prize For Girls Problems, 13
The figure below shows a right triangle $ \triangle ABC$.
[asy]unitsize(15);
pair A = (0, 4);
pair B = (0, 0);
pair C = (4, 0);
draw(A -- B -- C -- cycle);
pair D = (2, 0);
real p = 7 - 3sqrt(3);
real q = 4sqrt(3) - 6;
pair E = p + (4 - p)*I;
pair F = q*I;
draw(D -- E -- F -- cycle);
label("$A$", A, N);
label("$B$", B, S);
label("$C$", C, S);
label("$D$", D, S);
label("$E$", E, NE);
label("$F$", F, W);[/asy]
The legs $ \overline{AB}$ and $ \overline{BC}$ each have length $ 4$. An equilateral triangle $ \triangle DEF$ is inscribed in $ \triangle ABC$ as shown. Point $ D$ is the midpoint of $ \overline{BC}$. What is the area of $ \triangle DEF$?
1998 Turkey Team Selection Test, 1
Squares $BAXX^{'}$ and $CAYY^{'}$ are drawn in the exterior of a triangle $ABC$ with $AB = AC$. Let $D$ be the midpoint of $BC$, and $E$ and $F$ be the feet of the perpendiculars from an arbitrary point $K$ on the segment $BC$ to $BY$ and $CX$, respectively.
$(a)$ Prove that $DE = DF$ .
$(b)$ Find the locus of the midpoint of $EF$ .
2005 Harvard-MIT Mathematics Tournament, 5
A cube with side length $2$ is inscribed in a sphere. A second cube, with faces parallel to the first, is inscribed between the sphere and one face of the first cube. What is the length of a side of the smaller cube?
2011 AMC 12/AHSME, 18
A pyramid has a square base with sides of length 1 and has lateral faces that are equilateral triangles. A cube is placed within the pyramid so that one face is on the base of the pyramid and its opposite face has all its edges on the lateral faces of the pyramid. What is the volume of this cube?
$ \textbf{(A)}\ 5\sqrt{2}-7 \qquad
\textbf{(B)}\ 7-4\sqrt{3} \qquad
\textbf{(C)}\ \frac{2\sqrt{2}}{27} \qquad
\textbf{(D)}\ \frac{\sqrt{2}}{9} \qquad
\textbf{(E)}\ \frac{\sqrt{3}}{9} $
2008 ITest, 56
During the van ride from the Grand Canyon to the beach, Michael asks his dad about the costs of renewable energy resources. "How much more does it really cost for a family like ours to switch entirely to renewable energy?"
Jerry explains, "Part of that depends on where the family lives. In the Western states, solar energy pays off more than it does where we live in the Southeast. But as technology gets better, costs of producing more photovoltaic power go down, so in just a few years more people will have reasonably inexpensive options for switching to clearner power sources. Even now most families could switch to biomass for between $\$200$ and $\$1000$ per year. The energy comes from sawdust, switchgrass, and even landfill gas. We pay that premium ourselves, but some families operate on a tighter budget, or don't understand the alternatives yet."
"Ew, landfill gas!" Alexis complains mockingly.
Wanting to save her own energy, Alexis decides to take a nap. She falls asleep and dreams of walking around a $2-\text{D}$ coordinate grid, looking for a wormhole that she believes will transport her to the beach (bypassing the time spent in the family van). In her dream, Alexis finds herself holding a device that she recognizes as a $\textit{tricorder}$ from one of the old $\textit{Star Trek}$ t.v. series. The tricorder has a button labeled "wormhole" and when Alexis presses the button, a computerized voice from the tricorder announces, "You are at the origin. Distance to the wormhole is $2400$ units. Your wormhole distance allotment is $\textit{two}$."'
Unsure as to how to reach, Alexis begins walking forward. As she walks, the tricorder displays at all times her distance from her starting point at the origin. When Alexis is $2400$ units from the origin, she again presses the "wormhole" buttom. The same computerized voice as before begins, "Distance to the origin is $2400$ units. Distance to the wormhole is $3840$ units. Your wormhole distance allotment is $\textit{two}$."
Alexis begins to feel disoriented. She wonders what is means that her $\textit{wormhole distance allotment is two}$, and why that number didn't change as she pushed the button. She puts her hat down to mark her position, then wanders aroud a bit. The tricorder shows her two readings as she walks. The first she recognizes as her distance to the origin. The second reading clearly indicates her distance from the point where her hat lies - where she last pressed the button that gave her distance to the wormhole.
Alexis picks up her hat and begins walking around. Eventually Alexis finds herself at a spot $2400$ units from the origin and $3840$ units from where she last pressed the button. Feeling hopeful, Alexis presses the tricorder's wormhole button again. Nothing happens. She presses it again, and again nothing happens. "Oh," she thinks, "my wormhole allotment was $\textit{two}$, and I used it up already!"
Despair fills poor Alexis who isn't sure what a wormhole looks like or how she's supposed to find it. Then she takes matters into her own hands. Alexis sits down and scribbles some notes and realizes where the wormhole must be. Alexis gets up and runs straight from her "third position" to the wormhole. As she gets closer, she sees the wormhole, which looks oddly like a huge scoop of icecream. Alexis runs into the wormhole, then wakes up.
How many units did Alexis run from her third position to the wormhole?
1980 AMC 12/AHSME, 23
Line segments drawn from the vertex opposite the hypotenuse of a right triangle to the points trisecting the hypotenuse have lengths $\sin x$ and $\cos x$, where $x$ is a real number such that $0<x<\frac{\pi}2$. The length of the hypotenuse is
$\text{(A)} \ \frac 43 \qquad \text{(B)} \ \frac 32 \qquad \text{(C)} \ \frac{3\sqrt{5}}{5} \qquad \text{(D)} \ \frac{2\sqrt{5}}{3} \qquad \text{(E)} \ \text{not uniquely determined}$
1995 AIME Problems, 4
Circles of radius 3 and 6 are externally tangent to each other and are internally tangent to a circle of radius 9. The circle of radius 9 has a chord that is a common external tangent of the other two circles. Find the square of the length of this chord.
2008 National Olympiad First Round, 17
Let the vertices $A$ and $C$ of a right triangle $ABC$ be on the arc with center $B$ and radius $20$. A semicircle with diameter $[AB]$ is drawn to the inner region of the arc. The tangent from $C$ to the semicircle touches the semicircle at $D$ other than $B$. Let $CD$ intersect the arc at $F$. What is $|FD|$?
$
\textbf{(A)}\ 1
\qquad\textbf{(B)}\ \frac 52
\qquad\textbf{(C)}\ 3
\qquad\textbf{(D)}\ 4
\qquad\textbf{(E)}\ 5
$