This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 216

1999 USAMTS Problems, 4

There are $8436$ steel balls, each with radius $1$ centimeter, stacked in a tetrahedral pile, with one ball on top, $3$ balls in the second layer, $6$ in the third layer, $10$ in the fourth, and so on. Determine the height of the pile in centimeters.

2009 Canadian Mathematical Olympiad Qualification Repechage, 2

Triangle $ABC$ is right-angled at $C$ with $AC = b$ and $BC = a$. If $d$ is the length of the altitude from $C$ to $AB$, prove that $\dfrac{1}{a^2}+\dfrac{1}{b^2}=\dfrac{1}{d^2}$

2013 Stanford Mathematics Tournament, 7

A fly and an ant are on one corner of a unit cube. They wish to head to the opposite corner of the cube. The fly can fly through the interior of the cube, while the ant has to walk across the faces of the cube. How much shorter is the fly's path if both insects take the shortest path possible?

2011 Middle European Mathematical Olympiad, 6

Let $ABC$ be an acute triangle. Denote by $B_0$ and $C_0$ the feet of the altitudes from vertices $B$ and $C$, respectively. Let $X$ be a point inside the triangle $ABC$ such that the line $BX$ is tangent to the circumcircle of the triangle $AXC_0$ and the line $CX$ is tangent to the circumcircle of the triangle $AXB_0$. Show that the line $AX$ is perpendicular to $BC$.

1983 AIME Problems, 12

Diameter $AB$ of a circle has length a 2-digit integer (base ten). Reversing the digits gives the length of the perpendicular chord $CD$. The distance from their intersection point $H$ to the center $O$ is a positive rational number. Determine the length of $AB$.

2013 NIMO Problems, 3

In triangle $ABC$, $AB=13$, $BC=14$ and $CA=15$. Segment $BC$ is split into $n+1$ congruent segments by $n$ points. Among these points are the feet of the altitude, median, and angle bisector from $A$. Find the smallest possible value of $n$. [i]Proposed by Evan Chen[/i]

2000 National Olympiad First Round, 5

$[BD]$ is a median of $\triangle ABC$. $m(\widehat{ABD})=90^\circ$, $|AB|=2$, and $|AC|=6$. $|BC|=?$ $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 3\sqrt2 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 4\sqrt2 \qquad\textbf{(E)}\ 2\sqrt6 $

2010 AMC 10, 7

Crystal has a running course marked out for her daily run. She starts this run by heading due north for one mile. She then runs northeast for one mile, then southeast for one mile. The last portion of her run takes her on a straight line back to where she started. How far, in miles is this last portion of her run? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ \sqrt2 \qquad \textbf{(C)}\ \sqrt3 \qquad \textbf{(D)}\ 2 \qquad \textbf{(E)}\ 2\sqrt2$

2011 AMC 10, 22

A pyramid has a square base with sides of length 1 and has lateral faces that are equilateral triangles. A cube is placed within the pyramid so that one face is on the base of the pyramid and its opposite face has all its edges on the lateral faces of the pyramid. What is the volume of this cube? $ \textbf{(A)}\ 5\sqrt{2}-7 \qquad \textbf{(B)}\ 7-4\sqrt{3} \qquad \textbf{(C)}\ \frac{2\sqrt{2}}{27} \qquad \textbf{(D)}\ \frac{\sqrt{2}}{9} \qquad \textbf{(E)}\ \frac{\sqrt{3}}{9} $

2014 NIMO Problems, 5

Triangle $ABC$ has sidelengths $AB = 14, BC = 15,$ and $CA = 13$. We draw a circle with diameter $AB$ such that it passes $BC$ again at $D$ and passes $CA$ again at $E$. If the circumradius of $\triangle CDE$ can be expressed as $\tfrac{m}{n}$ where $m, n$ are coprime positive integers, determine $100m+n$. [i]Proposed by Lewis Chen[/i]

1988 IMO Longlists, 82

The triangle $ABC$ has a right angle at $C.$ The point $P$ is located on segment $AC$ such that triangles $PBA$ and $PBC$ have congruent inscribed circles. Express the length $x = PC$ in terms of $a = BC, b = CA$ and $c = AB.$

2004 AMC 12/AHSME, 18

Square $ ABCD$ has side length $ 2$. A semicircle with diameter $ \overline{AB}$ is constructed inside the square, and the tangent to the semicricle from $ C$ intersects side $ \overline{AD}$ at $ E$. What is the length of $ \overline{CE}$? [asy] defaultpen(linewidth(0.8)); pair A=origin, B=(1,0), C=(1,1), D=(0,1), X=tangent(C, (0.5,0), 0.5, 1), F=C+2*dir(C--X), E=intersectionpoint(C--F, A--D); draw(C--D--A--B--C--E); draw(Arc((0.5,0), 0.5, 0, 180)); pair point=(0.5,0.5); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E));[/asy] $ \textbf{(A)}\ \frac {2 \plus{} \sqrt5}{2} \qquad \textbf{(B)}\ \sqrt 5 \qquad \textbf{(C)}\ \sqrt 6 \qquad \textbf{(D)}\ \frac52 \qquad \textbf{(E)}\ 5 \minus{} \sqrt5$

1998 AIME Problems, 10

Eight spheres of radius 100 are placed on a flat surface so that each sphere is tangent to two others and their centers are the vertices of a regular octagon. A ninth sphere is placed on the flat surface so that it is tangent to each of the other eight spheres. The radius of this last sphere is $a+b\sqrt{c},$ where $a, b,$ and $c$ are positive integers, and $c$ is not divisible by the square of any prime. Find $a+b+c.$

1998 AMC 12/AHSME, 28

In triangle $ ABC$, angle $ C$ is a right angle and $ CB > CA$. Point $ D$ is located on $ \overline{BC}$ so that angle $ CAD$ is twice angle $ DAB$. If $ AC/AD \equal{} 2/3$, then $ CD/BD \equal{} m/n$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m \plus{} n$. $ \textbf{(A)}\ 10\qquad \textbf{(B)}\ 14\qquad \textbf{(C)}\ 18\qquad \textbf{(D)}\ 22\qquad \textbf{(E)}\ 26$

2013 NIMO Problems, 4

On side $\overline{AB}$ of square $ABCD$, point $E$ is selected. Points $F$ and $G$ are located on sides $\overline{AB}$ and $\overline{AD}$, respectively, such that $\overline{FG} \perp \overline{CE}$. Let $P$ be the intersection point of segments $\overline{FG}$ and $\overline{CE}$. Given that $[EPF] = 1$, $[EPGA] = 8$, and $[CPFB] = 15$, compute $[PGDC]$. (Here $[\mathcal P]$ denotes the area of the polygon $\mathcal P$.) [i]Proposed by Aaron Lin[/i]

2000 India National Olympiad, 4

In a convex quadrilateral $PQRS$, $PQ =RS$, $(\sqrt{3} +1 )QR = SP$ and $\angle RSP - \angle SQP = 30^{\circ}$. Prove that $\angle PQR - \angle QRS = 90^{\circ}.$

1986 IMO Longlists, 76

Let $A, B$, and $C$ be three points on the edge of a circular chord such that $B$ is due west of $C$ and $ABC$ is an equilateral triangle whose side is $86$ meters long. A boy swam from $A$ directly toward $B$. After covering a distance of $x$ meters, he turned and swam westward, reaching the shore after covering a distance of $y$ meters. If $x$ and $y$ are both positive integers, determine $y.$

2000 National Olympiad First Round, 13

Let $d$ be one of the common tangent lines of externally tangent circles $k_1$ and $k_2$. $d$ touches $k_1$ at $A$. Let $[AB]$ be a diameter of $k_1$. The tangent from $B$ to $k_2$ touches $k_2$ at $C$. If $|AB|=8$ and the diameter of $k_2$ is $7$, then what is $|BC|$? $ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 6\sqrt 2 \qquad\textbf{(C)}\ 10 \qquad\textbf{(D)}\ 8 \qquad\textbf{(E)}\ 5\sqrt 3 $

1973 AMC 12/AHSME, 20

A cowboy is 4 miles south of a stream which flows due east. He is also 8 miles west and 7 miles north of his cabin. He wishes to water his horse at the stream and return home. The shortest distance (in miles) he can travel and accomplish this is $ \textbf{(A)}\ 4\plus{}\sqrt{185} \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 17 \qquad \textbf{(D)}\ 18 \qquad \textbf{(E)}\ \sqrt{32}\plus{}\sqrt{137}$

2000 National Olympiad First Round, 33

Let $K$ be a point on the side $[AB]$, and $L$ be a point on the side $[BC]$ of the square $ABCD$. If $|AK|=3$, $|KB|=2$, and the distance of $K$ to the line $DL$ is $3$, what is $|BL|:|LC|$? $ \textbf{(A)}\ \frac78 \qquad\textbf{(B)}\ \frac{\sqrt 3}2 \qquad\textbf{(C)}\ \frac 87 \qquad\textbf{(D)}\ \frac 38 \qquad\textbf{(E)}\ \frac{\sqrt 2}2 $

2008 AMC 12/AHSME, 9

Points $ A$ and $ B$ are on a circle of radius $ 5$ and $ AB\equal{}6$. Point $ C$ is the midpoint of the minor arc $ AB$. What is the length of the line segment $ AC$? $ \textbf{(A)}\ \sqrt{10} \qquad \textbf{(B)}\ \frac{7}{2} \qquad \textbf{(C)}\ \sqrt{14} \qquad \textbf{(D)}\ \sqrt{15} \qquad \textbf{(E)}\ 4$

2010 Princeton University Math Competition, 2

In a rectangular plot of land, a man walks in a very peculiar fashion. Labeling the corners $ABCD$, he starts at $A$ and walks to $C$. Then, he walks to the midpoint of side $AD$, say $A_1$. Then, he walks to the midpoint of side $CD$ say $C_1$, and then the midpoint of $A_1D$ which is $A_2$. He continues in this fashion, indefinitely. The total length of his path if $AB=5$ and $BC=12$ is of the form $a + b\sqrt{c}$. Find $\displaystyle\frac{abc}{4}$.

1973 AMC 12/AHSME, 1

A chord which is the perpendicular bisector of a radius of length 12 in a circle, has length $ \textbf{(A)}\ 3\sqrt3 \qquad \textbf{(B)}\ 27 \qquad \textbf{(C)}\ 6\sqrt3 \qquad \textbf{(D)}\ 12\sqrt3 \qquad \textbf{(E)}\ \text{ none of these}$

1961 AMC 12/AHSME, 36

In triangle $ABC$ the median from $A$ is given perpendicular to the median from $B$. If $BC=7$ and $AC=6$, find the length of $AB$. ${{ \textbf{(A)}\ 4\qquad\textbf{(B)}\ \sqrt{17} \qquad\textbf{(C)}\ 4.25\qquad\textbf{(D)}\ 2\sqrt{5} }\qquad\textbf{(E)}\ 4.5} $

2007 China Team Selection Test, 2

Let $ I$ be the incenter of triangle $ ABC.$ Let $ M,N$ be the midpoints of $ AB,AC,$ respectively. Points $ D,E$ lie on $ AB,AC$ respectively such that $ BD\equal{}CE\equal{}BC.$ The line perpendicular to $ IM$ through $ D$ intersects the line perpendicular to $ IN$ through $ E$ at $ P.$ Prove that $ AP\perp BC.$