This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 216

1996 IMO Shortlist, 9

In the plane, consider a point $ X$ and a polygon $ \mathcal{F}$ (which is not necessarily convex). Let $ p$ denote the perimeter of $ \mathcal{F}$, let $ d$ be the sum of the distances from the point $ X$ to the vertices of $ \mathcal{F}$, and let $ h$ be the sum of the distances from the point $ X$ to the sidelines of $ \mathcal{F}$. Prove that $ d^2 \minus{} h^2\geq\frac {p^2}{4}.$

2014 NIMO Problems, 7

Let $\triangle ABC$ have $AB=6$, $BC=7$, and $CA=8$, and denote by $\omega$ its circumcircle. Let $N$ be a point on $\omega$ such that $AN$ is a diameter of $\omega$. Furthermore, let the tangent to $\omega$ at $A$ intersect $BC$ at $T$, and let the second intersection point of $NT$ with $\omega$ be $X$. The length of $\overline{AX}$ can be written in the form $\tfrac m{\sqrt n}$ for positive integers $m$ and $n$, where $n$ is not divisible by the square of any prime. Find $100m+n$. [i]Proposed by David Altizio[/i]

1993 AIME Problems, 15

Let $\overline{CH}$ be an altitude of $\triangle ABC$. Let $R$ and $S$ be the points where the circles inscribed in the triangles $ACH$ and $BCH$ are tangent to $\overline{CH}$. If $AB = 1995$, $AC = 1994$, and $BC = 1993$, then $RS$ can be expressed as $m/n$, where $m$ and $n$ are relatively prime integers. Find $m + n$

1985 IMO Longlists, 97

In a plane a circle with radius $R$ and center $w$ and a line $\Lambda$ are given. The distance between $w$ and $\Lambda$ is $d, d > R$. The points $M$ and $N$ are chosen on $\Lambda$ in such a way that the circle with diameter $MN$ is externally tangent to the given circle. Show that there exists a point $A$ in the plane such that all the segments $MN$ are seen in a constant angle from $A.$

1986 India National Olympiad, 3

Two circles with radii a and b respectively touch each other externally. Let c be the radius of a circle that touches these two circles as well as a common tangent to the two circles. Prove that \[ \frac{1}{\sqrt{c}}\equal{}\frac{1}{\sqrt{a}}\plus{}\frac{1}{\sqrt{b}}\]

2005 China Team Selection Test, 2

Cyclic quadrilateral $ABCD$ has positive integer side lengths $AB$, $BC$, $CA$, $AD$. It is known that $AD=2005$, $\angle{ABC}=\angle{ADC} = 90^o$, and $\max \{ AB,BC,CD \} < 2005$. Determine the maximum and minimum possible values for the perimeter of $ABCD$.

1995 AMC 8, 24

In parallelogram $ABCD$, $\overline{DE}$ is the altitude to the base $\overline{AB}$ and $\overline{DF}$ is the altitude to the base $\overline{BC}$. ['''Note:''' ''Both pictures represent the same parallelogram.''] If $DC=12$, $EB=4$, and $DE=6$, then $DF=$ [asy] unitsize(12); pair A,B,C,D,P,Q,W,X,Y,Z; A = (0,0); B = (12,0); C = (20,6); D = (8,6); W = (18,0); X = (30,0); Y = (38,6); Z = (26,6); draw(A--B--C--D--cycle); draw(W--X--Y--Z--cycle); P = (8,0); Q = (758/25,6/25); dot(A); dot(B); dot(C); dot(D); dot(W); dot(X); dot(Y); dot(Z); dot(P); dot(Q); draw(A--B--C--D--cycle); draw(W--X--Y--Z--cycle); draw(D--P); draw(Z--Q); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",D,NW); label("$E$",P,S); label("$A$",W,SW); label("$B$",X,S); label("$C$",Y,NE); label("$D$",Z,NW); label("$F$",Q,E); [/asy] $\text{(A)}\ 6.4 \qquad \text{(B)}\ 7 \qquad \text{(C)}\ 7.2 \qquad \text{(D)}\ 8 \qquad \text{(E)}\ 10$

2003 AMC 12-AHSME, 22

Let $ ABCD$ be a rhombus with $ AC\equal{}16$ and $ BD\equal{}30$. Let $ N$ be a point on $ \overline{AB}$, and let $ P$ and $ Q$ be the feet of the perpendiculars from $ N$ to $ \overline{AC}$ and $ \overline{BD}$, respectively. Which of the following is closest to the minimum possible value of $ PQ$? [asy]unitsize(2.5cm); defaultpen(linewidth(.8pt)+fontsize(8pt)); pair D=(0,0), C=dir(0), A=dir(aSin(240/289)), B=shift(A)*C; pair Np=waypoint(B--A,0.6), P=foot(Np,A,C), Q=foot(Np,B,D); draw(A--B--C--D--cycle); draw(A--C); draw(B--D); draw(Np--Q); draw(Np--P); label("$D$",D,SW); label("$C$",C,SE); label("$B$",B,NE); label("$A$",A,NW); label("$N$",Np,N); label("$P$",P,SW); label("$Q$",Q,SSE); draw(rightanglemark(Np,P,C,2)); draw(rightanglemark(Np,Q,D,2));[/asy]$ \textbf{(A)}\ 6.5 \qquad \textbf{(B)}\ 6.75 \qquad \textbf{(C)}\ 7 \qquad \textbf{(D)}\ 7.25 \qquad \textbf{(E)}\ 7.5$

2007 AIME Problems, 3

Square $ABCD$ has side length $13$, and points $E$ and $F$ are exterior to the square such that $BE=DF=5$ and $AE=CF=12$. Find $EF^{2}$. [asy] size(200); defaultpen(fontsize(10)); real x=22.61986495; pair A=(0,26), B=(26,26), C=(26,0), D=origin, E=A+24*dir(x), F=C+24*dir(180+x); draw(B--C--F--D--C^^D--A--E--B--A, linewidth(0.7)); dot(A^^B^^C^^D^^E^^F); pair point=(13,13); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F));[/asy]

2014 AMC 10, 22

Eight semicircles line the inside of a square with side length 2 as shown. What is the radius of the circle tangent to all of these semicircles? [asy] scale(200); draw(scale(.5)*((-1,-1)--(1,-1)--(1,1)--(-1,1)--cycle)); path p = arc((.25,-.5),.25,0,180)--arc((-.25,-.5),.25,0,180); draw(p); p=rotate(90)*p; draw(p); p=rotate(90)*p; draw(p); p=rotate(90)*p; draw(p); draw(scale((sqrt(5)-1)/4)*unitcircle); [/asy] $\text{(A) } \dfrac{1+\sqrt2}4 \quad \text{(B) } \dfrac{\sqrt5-1}2 \quad \text{(C) } \dfrac{\sqrt3+1}4 \quad \text{(D) } \dfrac{2\sqrt3}5 \quad \text{(E) } \dfrac{\sqrt5}3$

2011 AMC 8, 20

Quadrilateral $ABCD$ is a trapezoid, $AD = 15$, $AB = 50$, $BC = 20$, and the altitude is $12$. What is the area of the trapezoid? [asy] pair A,B,C,D; A=(3,20); B=(35,20); C=(47,0); D=(0,0); draw(A--B--C--D--cycle); dot((0,0)); dot((3,20)); dot((35,20)); dot((47,0)); label("A",A,N); label("B",B,N); label("C",C,S); label("D",D,S); draw((19,20)--(19,0)); dot((19,20)); dot((19,0)); draw((19,3)--(22,3)--(22,0)); label("12",(21,10),E); label("50",(19,22),N); label("15",(1,10),W); label("20",(41,12),E);[/asy] $ \textbf{(A)}600\qquad\textbf{(B)}650\qquad\textbf{(C)}700\qquad\textbf{(D)}750\qquad\textbf{(E)}800 $

2008 ITest, 62

Find the number of values of $x$ such that the number of square units in the area of the isosceles triangle with sides $x$, $65$, and $65$ is a positive integer.

2014 AIME Problems, 15

In $ \triangle ABC $, $ AB = 3 $, $ BC = 4 $, and $ CA = 5 $. Circle $\omega$ intersects $\overline{AB}$ at $E$ and $B$, $\overline{BC}$ at $B$ and $D$, and $\overline{AC}$ at $F$ and $G$. Given that $EF=DF$ and $\tfrac{DG}{EG} = \tfrac{3}{4}$, length $DE=\tfrac{a\sqrt{b}}{c}$, where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. Find $a+b+c$.

1981 AMC 12/AHSME, 2

Point $E$ is on side $AB$ of square $ABCD$. If $EB$ has length one and $EC$ has length two, then the area of the square is $\text{(A)}\ \sqrt{3} \qquad \text{(B)}\ \sqrt{5} \qquad \text{(C)}\ 3 \qquad \text{(D)}\ 2\sqrt{3} \qquad \text{(E)}\ 5$

2006 Purple Comet Problems, 10

An equilateral triangle with side length $6$ has a square of side length $6$ attached to each of its edges as shown. The distance between the two farthest vertices of this figure (marked $A$ and $B$ in the figure) can be written as $m + \sqrt{n}$ where $m$ and $n$ are positive integers. Find $m + n$. [asy] draw((0,0)--(1,0)--(1/2,sqrt(3)/2)--cycle); draw((1,0)--(1+sqrt(3)/2,1/2)--(1/2+sqrt(3)/2,1/2+sqrt(3)/2)--(1/2,sqrt(3)/2)); draw((0,0)--(-sqrt(3)/2,1/2)--(-sqrt(3)/2+1/2,1/2+sqrt(3)/2)--(1/2,sqrt(3)/2)); dot((-sqrt(3)/2+1/2,1/2+sqrt(3)/2)); label("A", (-sqrt(3)/2+1/2,1/2+sqrt(3)/2), N); draw((1,0)--(1,-1)--(0,-1)--(0,0)); dot((1,-1)); label("B", (1,-1), SE); [/asy]

2004 China Second Round Olympiad, 1

In an acute triangle $ABC$, point $H$ is the intersection point of altitude $CE$ to $AB$ and altitude $BD$ to $AC$. A circle with $DE$ as its diameter intersects $AB$ and $AC$ at $F$ and $G$, respectively. $FG$ and $AH$ intersect at point $K$. If $BC=25$, $BD=20$, and $BE=7$, find the length of $AK$.

2015 AMC 12/AHSME, 8

The ratio of the length to the width of a rectangle is $4:3$. If the rectangle has diagonal of length $d$, then the area may be expressed as $kd^2$ for some constant $k$. What is $k$? $\textbf{(A) }\dfrac27\qquad\textbf{(B) }\dfrac37\qquad\textbf{(C) }\dfrac{12}{25}\qquad\textbf{(D) }\dfrac{16}{25}\qquad\textbf{(E) }\dfrac34$

2012 AMC 10, 12

Point $B$ is due east of point $A$. Point $C$ is due north of point $B$. The distance between points $A$ and $C$ is $10\sqrt{2}$ meters, and $\angle BAC=45^{\circ}$. Point $D$ is $20$ meters due north of point $C$. The distance $AD$ is between which two integers? $ \textbf{(A)}\ 30\text{ and }31\qquad\textbf{(B)}\ 31\text{ and }32\qquad\textbf{(C)}\ 32\text{ and }33\qquad\textbf{(D)}\ 33\text{ and }34\qquad\textbf{(E)}\ 34\text{ and }35$

2013 Harvard-MIT Mathematics Tournament, 16

The walls of a room are in the shape of a triangle $ABC$ with $\angle ABC = 90^\circ$, $\angle BAC = 60^\circ$, and $AB=6$. Chong stands at the midpoint of $BC$ and rolls a ball toward $AB$. Suppose that the ball bounces off $AB$, then $AC$, then returns exactly to Chong. Find the length of the path of the ball.

2012 AMC 12/AHSME, 15

Jesse cuts a circular paper disk of radius $12$ along two radii to form two sectors, the smaller having a central angle of $120$ degrees. He makes two circular cones, using each sector to form the lateral surface of a cone. What is the ratio of the volume of the smaller cone to that of the larger? $ \textbf{(A)}\ \frac{1}{8} \qquad\textbf{(B)}\ \frac{1}{4} \qquad\textbf{(C)}\ \frac{\sqrt{10}}{10} \qquad\textbf{(D)}\ \frac{\sqrt{5}}{6} \qquad\textbf{(E)}\ \frac{\sqrt{10}}{5} $

2000 AMC 12/AHSME, 24

If circular arcs $ AC$ and $ BC$ have centers at $ B$ and $ A$, respectively, then there exists a circle tangent to both $ \stackrel{\frown}{AC}$ and $ \stackrel{\frown}{BC}$, and to $ \overline{AB}$. If the length of $ \stackrel{\frown}{BC}$ is $ 12$, then the circumference of the circle is [asy]unitsize(4cm); defaultpen(fontsize(8pt)+linewidth(.8pt)); dotfactor=3; pair O=(0,.375); pair A=(-.5,0); pair B=(.5,0); pair C=shift(-.5,0)*dir(60); draw(Arc(A,1,0,60)); draw(Arc(B,1,120,180)); draw(A--B); draw(Circle(O,.375)); dot(A); dot(B); dot(C); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,N);[/asy]$ \textbf{(A)}\ 24 \qquad \textbf{(B)}\ 25 \qquad \textbf{(C)}\ 26 \qquad \textbf{(D)}\ 27 \qquad \textbf{(E)}\ 28$

2005 China Team Selection Test, 2

Cyclic quadrilateral $ABCD$ has positive integer side lengths $AB$, $BC$, $CA$, $AD$. It is known that $AD=2005$, $\angle{ABC}=\angle{ADC} = 90^o$, and $\max \{ AB,BC,CD \} < 2005$. Determine the maximum and minimum possible values for the perimeter of $ABCD$.

2010 AMC 10, 16

A square of side length $ 1$ and a circle of radius $ \sqrt3/3$ share the same center. What is the area inside the circle, but outside the square? $ \textbf{(A)}\ \frac{\pi}3 \minus{} 1 \qquad\textbf{(B)}\ \frac{2\pi}{9} \minus{} \frac{\sqrt3}3 \qquad\textbf{(C)}\ \frac{\pi}{18} \qquad\textbf{(D)}\ \frac14 \qquad\textbf{(E)}\ 2\pi/9$

1990 AMC 12/AHSME, 21

Consider a pyramid $P-ABCD$ whose base $ABCD$ is a square and whose vertex $P$ is equidistant from $A$, $B$, $C$, and $D$. If $AB=1$ and $\angle APD=2\theta$ then the volume of the pyramid is $\text{(A)} \ \frac{\sin \theta}{6} \qquad \text{(B)} \ \frac{\cot \theta}{6} \qquad \text{(C)} \ \frac1{6\sin \theta} \qquad \text{(D)} \ \frac{1-\sin 2\theta}{6} \qquad \text{(E)} \ \frac{\sqrt{\cos 2\theta}}{6\sin \theta}$

2004 AMC 12/AHSME, 19

A truncated cone has horizontal bases with radii $ 18$ and $ 2$. A sphere is tangent to the top, bottom, and lateral surface of the truncated cone. What is the radius of the sphere? $ \textbf{(A)}\ 6 \qquad \textbf{(B)}\ 4\sqrt5 \qquad \textbf{(C)}\ 9 \qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 6\sqrt3$