Found problems: 1148
2017 German National Olympiad, 1
Given two real numbers $p$ and $q$, we study the following system of equations with variables $x,y \in \mathbb{R}$:
\begin{align*} x^2+py+q&=0,\\
y^2+px+q&=0.
\end{align*}
Determine the number of distinct solutions $(x,y)$ in terms of $p$ and $q$.
1976 AMC 12/AHSME, 20
Let $a,~b,$ and $x$ be positive real numbers distinct from one. Then \[4(\log_ax)^2+3(\log_bx)^2=8(\log_ax)(\log_bx)\]
$\textbf{(A) }\text{for all values of }a,~b,\text{ and }x\qquad$
$\textbf{(B) }\text{if and only if }a=b^2\qquad$
$\textbf{(C) }\text{if and only if }b=a^2\qquad$
$\textbf{(D) }\text{if and only if }x=ab\qquad$
$ \textbf{(E) }\text{for none of these}$
2009 Hong Kong TST, 5
Let $ a,b,c$ be the three sides of a triangle. Determine all possible values of $ \frac {a^2 \plus{} b^2 \plus{} c^2}{ab \plus{} bc \plus{} ca}$
2004 Manhattan Mathematical Olympiad, 2
Assume $a,b,c$ are odd integers. Show that the quadratic equation
\[ ax^2 + bx + c = 0 \]
has no rational solutions. (A number is said to be [i]rational[/i], if it can be written as a fraction: $\frac{\text{integer}}{\text{integer}}$.)
2008 Alexandru Myller, 1
How many solutions does the equation $ \frac{[x]}{\{ x\}} =\frac{2007x}{2008} $ have?
[i]Mihail Bălună[/i]
2006 AMC 10, 8
A parabola with equation $ y \equal{} x^2 \plus{} bx \plus{} c$ passes through the points $ (2,3)$ and $ (4,3)$. What is $ c$?
$ \textbf{(A) } 2 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 7 \qquad \textbf{(D) } 10 \qquad \textbf{(E) } 11$
2002 Germany Team Selection Test, 1
Determine the number of all numbers which are represented as $x^2+y^2$ with $x, y \in \{1, 2, 3, \ldots, 1000\}$ and which are divisible by 121.
2008 ITest, 76
During the car ride home, Michael looks back at his recent math exams. A problem on Michael's calculus mid-term gets him starting thinking about a particular quadratic, \[x^2-sx+p,\] with roots $r_1$ and $r_2$. He notices that \[r_1+r_2=r_1^2+r_2^2=r_1^3+r_2^3=\cdots=r_1^{2007}+r_2^{2007}.\] He wonders how often this is the case, and begins exploring other quantities associated with the roots of such a quadratic. He sets out to compute the greatest possible value of \[\dfrac1{r_1^{2008}}+\dfrac1{r_2^{2008}}.\] Help Michael by computing this maximum.
2004 Nicolae Coculescu, 2
Solve in the real numbers the equation:
$$ \cos^2 \frac{(x-2)\pi }{4} +\cos\frac{(x-2)\pi }{3} =\log_3 (x^2-4x+6) $$
[i]Gheorghe Mihai[/i]
PEN G Problems, 29
Let $p(x)=x^{3}+a_{1}x^{2}+a_{2}x+a_{3}$ have rational coefficients and have roots $r_{1}$, $r_{2}$, and $r_{3}$. If $r_{1}-r_{2}$ is rational, must $r_{1}$, $r_{2}$, and $r_{3}$ be rational?
1998 India National Olympiad, 2
Let $a$ and $b$ be two positive rational numbers such that $\sqrt[3] {a} + \sqrt[3]{b}$ is also a rational number. Prove that $\sqrt[3]{a}$ and $\sqrt[3] {b}$ themselves are rational numbers.
1998 Romania National Olympiad, 1
Find the integer numbers $a, b, c$ such that the function $f: R \to R$, $f(x) = ax^2 +bx + c$ satisfies the equalities : $$f(f(1) ))= f (f(2 ) )= f(f (3 ))$$
1991 Federal Competition For Advanced Students, 3
Find the number of squares in the sequence given by $ a_0\equal{}91$ and $ a_{n\plus{}1}\equal{}10a_n\plus{}(\minus{}1)^n$ for $ n \ge 0.$
1995 AIME Problems, 9
Triangle $ABC$ is isosceles, with $AB=AC$ and altitude $AM=11.$ Suppose that there is a point $D$ on $\overline{AM}$ with $AD=10$ and $\angle BDC=3\angle BAC.$ Then the perimeter of $\triangle ABC$ may be written in the form $a+\sqrt{b},$ where $a$ and $b$ are integers. Find $a+b.$
[asy] import graph; size(7cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-1.55,xmax=7.95,ymin=-4.41,ymax=5.3; draw((1,3)--(0,0)); draw((0,0)--(2,0)); draw((2,0)--(1,3)); draw((1,3)--(1,0)); draw((1,0.7)--(0,0)); draw((1,0.7)--(2,0)); label("$11$",(0.75,1.63),SE*lsf); dot((1,3),ds); label("$A$",(0.96,3.14),NE*lsf); dot((0,0),ds); label("$B$",(-0.15,-0.18),NE*lsf); dot((2,0),ds); label("$C$",(2.06,-0.18),NE*lsf); dot((1,0),ds); label("$M$",(0.97,-0.27),NE*lsf); dot((1,0.7),ds); label("$D$",(1.05,0.77),NE*lsf); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]
1997 All-Russian Olympiad, 1
Let $P(x)$ be a quadratic polynomial with nonnegative coeficients. Show that for any real numbers $x$ and $y$, we have the inequality $P(xy)^2 \leqslant P(x^2)P(y^2)$.
[i]E. Malinnikova[/i]
2007 Mediterranean Mathematics Olympiad, 3
In the triangle $ABC$, the angle $\alpha = \angle BAC$ and the side $a = BC$ are given. Assume that $a = \sqrt{rR}$, where $r$ is the inradius and $R$ the circumradius. Compute all possible lengths of sides $AB$ and $AC.$
2005 AMC 10, 16
The quadratic equation $x^2+mx+n=0$ has roots that are twice those of $x^2+px+m=0$, and none of $m$, $n$, and $p$ is zero. What is the value of $\frac{n}{p}$?
$\text{(A)} \ 1 \qquad \text{(B)} \ 2 \qquad \text{(C)} \ 4 \qquad \text{(D)} \ 8\qquad \text{(E)} \ 16$
2007 National Olympiad First Round, 34
For how many primes $p$ less than $15$, there exists integer triples $(m,n,k)$ such that
\[
\begin{array}{rcl}
m+n+k &\equiv& 0 \pmod p \\
mn+mk+nk &\equiv& 1 \pmod p \\
mnk &\equiv& 2 \pmod p.
\end{array}
\]
$
\textbf{(A)}\ 2
\qquad\textbf{(B)}\ 3
\qquad\textbf{(C)}\ 4
\qquad\textbf{(D)}\ 5
\qquad\textbf{(E)}\ 6
$
2007 National Olympiad First Round, 27
What is the sum of real roots of the equation
\[
\left ( x + 1\right )\left ( x + \dfrac 14\right )\left ( x + \dfrac 12\right )\left ( x + \dfrac 34\right )= \dfrac {45}{32}?
\]
$
\textbf{(A)}\ 0
\qquad\textbf{(B)}\ -1
\qquad\textbf{(C)}\ -\dfrac {3}{2}
\qquad\textbf{(D)}\ -\dfrac {5}{4}
\qquad\textbf{(E)}\ -\dfrac {7}{12}
$
2021 German National Olympiad, 1
Determine all real numbers $a,b,c$ and $d$ with the following property: The numbers $a$ and $b$ are distinct roots of $2x^2-3cx+8d$ and the numbers $c$ and $d$ are distinct roots of $2x^2-3ax+8b$.
2010 Princeton University Math Competition, 4
Define $\displaystyle{f(x) = x + \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x + \ldots}}}}}$. Find the smallest integer $x$ such that $f(x)\ge50\sqrt{x}$.
(Edit: The official question asked for the "smallest integer"; the intended question was the "smallest positive integer".)
2013 Indonesia MO, 5
Let $P$ be a quadratic (polynomial of degree two) with a positive leading coefficient and negative discriminant. Prove that there exists three quadratics $P_1, P_2, P_3$ such that:
- $P(x) = P_1(x) + P_2(x) + P_3(x)$
- $P_1, P_2, P_3$ have positive leading coefficients and zero discriminants (and hence each has a double root)
- The roots of $P_1, P_2, P_3$ are different
2013 All-Russian Olympiad, 3
Find all positive integers $k$ such that for the first $k$ prime numbers $2, 3, \ldots, p_k$ there exist positive integers $a$ and $n>1$, such that $2\cdot 3\cdot\ldots\cdot p_k - 1=a^n$.
[i]V. Senderov[/i]
2007 District Olympiad, 4
Let $\mathcal K$ be a field with $2^{n}$ elements, $n \in \mathbb N^\ast$, and $f$ be the polynomial $X^{4}+X+1$. Prove that:
(a) if $n$ is even, then $f$ is reducible in $\mathcal K[X]$;
(b) if $n$ is odd, then $f$ is irreducible in $\mathcal K[X]$.
[hide="Remark."]I saw the official solution and it wasn't that difficult, but I just couldn't solve this bloody problem.[/hide]
1978 AMC 12/AHSME, 1
If $1-\frac{4}{x}+\frac{4}{x^2}=0$, then $\frac{2}{x}$ equals
$\textbf{(A) }-1\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }-1\text{ or }2\qquad \textbf{(E) }-1\text{ or }-2$