This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1148

1996 All-Russian Olympiad, 8

Tags: quadratic , algebra
Goodnik writes 10 numbers on the board, then Nogoodnik writes 10 more numbers, all 20 of the numbers being positive and distinct. Can Goodnik choose his 10 numbers so that no matter what Nogoodnik writes, he can form 10 quadratic trinomials of the form $x^2 +px+q$, whose coeficients $p$ and $q$ run through all of the numbers written, such that the real roots of these trinomials comprise exactly 11 values? [i]I. Rubanov[/i]

2023 All-Russian Olympiad, 1

If $x\in\mathbb{R}$ satisfy $sin$ $x+tan$ $x\in\mathbb{Q}$, $cos$ $x+cot$ $x\in\mathbb{Q}$ Prove that $sin$ $2x$ is a root of an integral coefficient quadratic function

2010 Contests, 1

Let $a,b,c\in\{0,1,2,\cdots,9\}$.The quadratic equation $ax^2+bx+c=0$ has a rational root. Prove that the three-digit number $abc$ is not a prime number.

2019 Philippine TST, 3

Determine all ordered triples $(a, b, c)$ of real numbers such that whenever a function $f : \mathbb{R} \to \mathbb{R}$ satisfies $$|f(x) - f(y)| \le a(x - y)^2 + b(x - y) + c$$ for all real numbers $x$ and $y$, then $f$ must be a constant function.

1984 IMO Longlists, 38

Determine all continuous functions $f: \mathbb R \to \mathbb R$ such that \[f(x + y)f(x - y) = (f(x)f(y))^2, \quad \forall(x, y) \in\mathbb{R}^2.\]

PEN I Problems, 11

Let $p$ be a prime number of the form $4k+1$. Show that \[\sum^{p-1}_{i=1}\left( \left \lfloor \frac{2i^{2}}{p}\right \rfloor-2\left \lfloor \frac{i^{2}}{p}\right \rfloor \right) = \frac{p-1}{2}.\]

2013 AMC 10, 19

The real numbers $c, b, a$ form an arithmetic sequence with $a\ge b\ge c\ge 0$. The quadratic $ax^2+bx+c$ has exactly one root. What is this root? $\textbf{(A)}\ -7-4\sqrt{3}\qquad\textbf{(B)}\ -2-\sqrt{3}\qquad\textbf{(C)}\ -1\qquad\textbf{(D)}\ -2+\sqrt{3}\qquad\textbf{(E)}\ -7+4\sqrt{3} $

2013 Finnish National High School Mathematics Competition, 5

Find all integer triples $(m,p,q)$ satisfying \[2^mp^2+1=q^5\] where $m>0$ and both $p$ and $q$ are prime numbers.

2011 Tuymaada Olympiad, 4

Prove that, among $100000$ consecutive $100$-digit positive integers, there is an integer $n$ such that the length of the period of the decimal expansion of $\frac1n$ is greater than $2011$.

PEN D Problems, 23

Let $p$ be an odd prime of the form $p=4n+1$. [list=a][*] Show that $n$ is a quadratic residue $\pmod{p}$. [*] Calculate the value $n^{n}$ $\pmod{p}$. [/list]

2011 Polish MO Finals, 1

Determine all pairs of functions $f,g:\mathbb{R}\rightarrow\mathbb{R}$ such that for any $x,y\in \mathbb{R}$, \[f(x)f(y)=g(x)g(y)+g(x)+g(y).\]

1978 Romania Team Selection Test, 9

A sequence $ \left( x_n\right)_{n\ge 0} $ of real numbers satisfies $ x_0>1=x_{n+1}\left( x_n-\left\lfloor x_n\right\rfloor\right) , $ for each $ n\ge 1. $ Prove that if $ \left( x_n\right)_{n\ge 0} $ is periodic, then $ x_0 $ is a root of a quadratic equation. Study the converse.

2017 Regional Olympiad of Mexico West, 5

Tags: quadratic , algebra
Laura and Daniel play with quadratic polynomials. First Laura says a nonzero real number $r$. Then Daniel says a nonzero real number $s$, and then again Laura says another nonzero real number $t$. Finally. Daniel writes the polynomial $P(x) = ax^2 + bx + c$ where $a,b$, and $c$ are $r,s$, and $t$ in some order Daniel chooses. Laura wins if the equation $P(x) = 0$ has two different real solutions, and Daniel wins otherwise. Determine who has a winning strategy and describe that strategy.

1999 Greece National Olympiad, 1

Let $f(x)=ax^2+bx+c$, where $a,b,c$ are nonnegative real numbers, not all equal to zero. Prove that $f(xy)^2\le f(x^2)f(y^2)$ for all real numbers $x,y$.

2016 Tournament Of Towns, 2

Do there exist integers $a$ and $b$ such that : (a) the equation $x^2 + ax + b = 0$ has no real roots, and the equation $\lfloor x^2 \rfloor + ax + b = 0$ has at least one real root? [i](2 points)[/i] (b) the equation $x^2 + 2ax + b$ = 0 has no real roots, and the equation $\lfloor x^2 \rfloor + 2ax + b = 0$ has at least one real root? [i]3 points[/i] (By $\lfloor k \rfloor$ we denote the integer part of $k$, that is, the greatest integer not exceeding $k$.) [i]Alexandr Khrabrov[/i]

2012 Finnish National High School Mathematics Competition, 1

A secant line splits a circle into two segments. Inside those segments, one draws two squares such that both squares has two corners on a secant line and two on the circumference. The ratio of the square's side lengths is $5:9$. Compute the ratio of the secant line versus circle radius.

1993 Greece National Olympiad, 13

Jenny and Kenny are walking in the same direction, Kenny at 3 feet per second and Jenny at 1 foot per second, on parallel paths that are 200 feet apart. A tall circular building 100 feet in diameter is centered midway between the paths. At the instant when the building first blocks the line of sight between Jenny and Kenny, they are 200 feet apart. Let $t$ be the amount of time, in seconds, before Jenny and Kenny can see each other again. If $t$ is written as a fraction in lowest terms, what is the sum of the numerator and denominator?

2004 IberoAmerican, 3

Given a set $ \mathcal{H}$ of points in the plane, $ P$ is called an "intersection point of $ \mathcal{H}$" if distinct points $ A,B,C,D$ exist in $ \mathcal{H}$ such that lines $ AB$ and $ CD$ are distinct and intersect in $ P$. Given a finite set $ \mathcal{A}_{0}$ of points in the plane, a sequence of sets is defined as follows: for any $ j\geq0$, $ \mathcal{A}_{j+1}$ is the union of $ \mathcal{A}_{j}$ and the intersection points of $ \mathcal{A}_{j}$. Prove that, if the union of all the sets in the sequence is finite, then $ \mathcal{A}_{i}=\mathcal{A}_{1}$ for any $ i\geq1$.

2005 AIME Problems, 4

The director of a marching band wishes to place the members into a formation that includes all of them and has no unfilled positions. If they are arranged in a square formation, there are 5 members left over. The director realizes that if he arranges the group in a formation with 7 more rows than columns, there are no members left over. Find the maximum number of members this band can have.

2011 National Olympiad First Round, 10

How many interger tuples $(x,y,z)$ are there satisfying $0\leq x,y,z < 2011$, $xy+yz+zx \equiv 0 \pmod{2011}$, and $x+y+z \equiv 0 \pmod{2011}$ ? $\textbf{(A)}\ 2010 \qquad\textbf{(B)}\ 2011 \qquad\textbf{(C)}\ 2012 \qquad\textbf{(D)}\ 4021 \qquad\textbf{(E)}\ 4023$

2011 AMC 12/AHSME, 24

Let $P(z) = z^8 + (4\sqrt{3} + 6) z^4 - (4\sqrt{3}+7)$. What is the minimum perimeter among all the 8-sided polygons in the complex plane whose vertices are precisely the zeros of $P(z)$? $ \textbf{(A)}\ 4\sqrt{3}+4 \qquad \textbf{(B)}\ 8\sqrt{2} \qquad \textbf{(C)}\ 3\sqrt{2}+3\sqrt{6} \qquad \textbf{(D)}\ 4\sqrt{2}+4\sqrt{3} \qquad $ $\textbf{(E)}\ 4\sqrt{3}+6 $

2007 AMC 10, 20

Tags: quadratic
Suppose that the number $ a$ satisfies the equation $ 4 \equal{} a \plus{} a^{ \minus{} 1}$. What is the value of $ a^{4} \plus{} a^{ \minus{} 4}$? $ \textbf{(A)}\ 164 \qquad \textbf{(B)}\ 172 \qquad \textbf{(C)}\ 192 \qquad \textbf{(D)}\ 194 \qquad \textbf{(E)}\ 212$

2013 Tuymaada Olympiad, 5

Prove that every polynomial of fourth degree can be represented in the form $P(Q(x))+R(S(x))$, where $P,Q,R,S$ are quadratic trinomials. [i]A. Golovanov[/i] [b]EDIT.[/b] It is confirmed that assuming the coefficients to be [b]real[/b], while solving the problem, earned a maximum score.

1963 Czech and Slovak Olympiad III A, 4

Consider two quadratic equations \begin{align*}x^2+ax+b&=0, \\ x^2+cx+d&=0,\end{align*} with real coefficients. Find necessary and sufficient conditions such that the first equation has (real) roots $x,x_1,$ the second $x,x_2$ and $x>0,x_1>x_2$.

2005 Bulgaria Team Selection Test, 4

Let $a_{i}$ and $b_{i}$, where $i \in \{1,2, \dots, 2005 \}$, be real numbers such that the inequality $(a_{i}x-b_{i})^{2} \ge \sum_{j=1, j \not= i}^{2005} (a_{j}x-b_{j})$ holds for all $x \in \mathbb{R}$ and all $i \in \{1,2, \dots, 2005 \}$. Find the maximum possible number of positive numbers amongst $a_{i}$ and $b_{i}$, $i \in \{1,2, \dots, 2005 \}$.