This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1148

1999 Romania Team Selection Test, 3

Prove that for any positive integer $n$, the number \[ S_n = {2n+1\choose 0}\cdot 2^{2n}+{2n+1\choose 2}\cdot 2^{2n-2}\cdot 3 +\cdots + {2n+1 \choose 2n}\cdot 3^n \] is the sum of two consecutive perfect squares. [i]Dorin Andrica[/i]

1994 India Regional Mathematical Olympiad, 4

Solve the system of equations for real $x$ and $y$: \begin{eqnarray*} 5x \left( 1 + \frac{1}{x^2 + y^2}\right) &=& 12 \\ 5y \left( 1 - \frac{1}{x^2+y^2} \right) &=& 4 . \end{eqnarray*}

2004 Vietnam National Olympiad, 2

Let $x$, $y$, $z$ be positive reals satisfying $\left(x+y+z\right)^{3}=32xyz$ Find the minimum and the maximum of $P=\frac{x^{4}+y^{4}+z^{4}}{\left(x+y+z\right)^{4}}$

1995 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 2

On the figure, the quadrilateral $ ABCD$ is a rectangle, $ P$ lies on $ AD$ and $ Q$ on $ AB.$ The triangles $ PAQ, QBC,$ and $ PCD$ all have the same areas, and $ BQ \equal{} 2.$ How long is $ AQ$? [img]http://i250.photobucket.com/albums/gg265/geometry101/NielsHenrikAbel1995Number2.jpg[/img] A. 7/2 B. $ \sqrt{7}$ C. $ 2 \sqrt{3}$ D. $ 1 \plus{} \sqrt{5}$ E. Not uniquely determined

2008 ISI B.Math Entrance Exam, 8

Let $a^2+b^2=1$ , $c^2+d^2=1$ , $ac+bd=0$ Prove that $a^2+c^2=1$ , $b^2+d^2=1$ , $ab+cd=0$ .

1953 AMC 12/AHSME, 44

In solving a problem that reduces to a quadratic equation one student makes a mistake only in the constant term of the equation and obtains $ 8$ and $ 2$ for the roots. Another student makes a mistake only in the coefficient of the first degree term and find $ \minus{}9$ and $ \minus{}1$ for the roots. The correct equation was: $ \textbf{(A)}\ x^2\minus{}10x\plus{}9\equal{}0 \qquad\textbf{(B)}\ x^2\plus{}10x\plus{}9\equal{}0 \qquad\textbf{(C)}\ x^2\minus{}10x\plus{}16\equal{}0\\ \textbf{(D)}\ x^2\minus{}8x\minus{}9\equal{}0 \qquad\textbf{(E)}\ \text{none of these}$

2009 USA Team Selection Test, 5

Find all pairs of positive integers $ (m,n)$ such that $ mn \minus{} 1$ divides $ (n^2 \minus{} n \plus{} 1)^2$. [i]Aaron Pixton.[/i]

2000 Junior Balkan MO, 1

Let $x$ and $y$ be positive reals such that \[ x^3 + y^3 + (x + y)^3 + 30xy = 2000. \] Show that $x + y = 10$.

2013 Balkan MO, 3

Let $S$ be the set of positive real numbers. Find all functions $f\colon S^3 \to S$ such that, for all positive real numbers $x$, $y$, $z$ and $k$, the following three conditions are satisfied: (a) $xf(x,y,z) = zf(z,y,x)$, (b) $f(x, ky, k^2z) = kf(x,y,z)$, (c) $f(1, k, k+1) = k+1$. ([i]United Kingdom[/i])

2007 CentroAmerican, 3

Let $S$ be a finite set of integers. Suppose that for every two different elements of $S$, $p$ and $q$, there exist not necessarily distinct integers $a \neq 0$, $b$, $c$ belonging to $S$, such that $p$ and $q$ are the roots of the polynomial $ax^{2}+bx+c$. Determine the maximum number of elements that $S$ can have.

2006 China Northern MO, 4

Given a function $f(x)=x^{2}+ax+b$ with $a,b \in R$, if there exists a real number $m$ such that $\left| f(m) \right| \leq \frac{1}{4}$ and $\left| f(m+1) \right| \leq \frac{1}{4}$, then find the maximum and minimum of the value of $\Delta=a^{2}-4b$.

1985 USAMO, 2

Determine each real root of \[x^4-(2\cdot10^{10}+1)x^2-x+10^{20}+10^{10}-1=0\] correct to four decimal places.

2024 Greece National Olympiad, 1

Tags: quadratic , algebra
Let $a, b, c$ be reals such that some two of them have difference greater than $\frac{1}{2 \sqrt{2}}$. Prove that there exists an integer $x$, such that $$x^2-4(a+b+c)x+12(ab+bc+ca)<0.$$

2019 PUMaC Algebra A, 3

Let $Q$ be a quadratic polynomial. If the sum of the roots of $Q^{100}(x)$ (where $Q^i(x)$ is defined by $Q^1(x)=Q(x)$, $Q^i(x)=Q(Q^{i-1}(x))$ for integers $i\geq 2$) is $8$ and the sum of the roots of $Q$ is $S$, compute $|\log_2(S)|$.

1977 Canada National Olympiad, 1

Tags: quadratic
If $f(x) = x^2 + x$, prove that the equation $4f(a) = f(b)$ has no solutions in positive integers $a$ and $b$.

Today's calculation of integrals, 867

Express $\int_0^2 f(x)dx$ for any quadratic functions $f(x)$ in terms of $f(0),\ f(1)$ and $f(2).$

2009 USAMO, 4

For $ n\geq2$ let $ a_1, a_2, \ldots a_n$ be positive real numbers such that \[ (a_1 \plus{} a_2 \plus{} \cdots \plus{} a_n)\left(\frac {1}{a_1} \plus{} \frac {1}{a_2} \plus{} \cdots \plus{} \frac {1}{a_n}\right) \leq \left(n \plus{} \frac {1}{2}\right)^2. \] Prove that $ \max(a_1, a_2, \ldots, a_n)\leq 4\min(a_1, a_2, \ldots, a_n)$.

2011 APMO, 1

Let $a,b,c$ be positive integers. Prove that it is impossible to have all of the three numbers $a^2+b+c,b^2+c+a,c^2+a+b$ to be perfect squares.

1952 AMC 12/AHSME, 13

The function $ x^2 \plus{} px \plus{} q$ with $ p$ and $ q$ greater than zero has its minimum value when: $ \textbf{(A)}\ x \equal{} \minus{} p \qquad\textbf{(B)}\ x \equal{} \frac {p}{2} \qquad\textbf{(C)}\ x \equal{} \minus{} 2p \qquad\textbf{(D)}\ x \equal{} \frac {p^2}{4q} \qquad\textbf{(E)}\ x \equal{} \frac { \minus{} p}{2}$

2013 Middle European Mathematical Olympiad, 7

The numbers from 1 to $ 2013^2 $ are written row by row into a table consisting of $ 2013 \times 2013 $ cells. Afterwards, all columns and all rows containing at least one of the perfect squares $ 1, 4, 9, \cdots, 2013^2 $ are simultaneously deleted. How many cells remain?

1983 USAMO, 2

Prove that the roots of\[x^5 + ax^4 + bx^3 + cx^2 + dx + e = 0\] cannot all be real if $2a^2 < 5b$.

Cono Sur Shortlist - geometry, 2012.G6.6

6. Consider a triangle $ABC$ with $1 < \frac{AB}{AC} < \frac{3}{2}$. Let $M$ and $N$, respectively, be variable points of the sides $AB$ and $AC$, different from $A$, such that $\frac{MB}{AC} - \frac{NC}{AB} = 1$. Show that circumcircle of triangle $AMN$ pass through a fixed point different from $A$.

2016 Moldova Team Selection Test, 2

Let $p$ be a prime number of the form $4k+1$. Show that \[\sum^{p-1}_{i=1}\left( \left \lfloor \frac{2i^{2}}{p}\right \rfloor-2\left \lfloor \frac{i^{2}}{p}\right \rfloor \right) = \frac{p-1}{2}.\]

2010 Contests, 2

Find all non-negative integers $m,n,p,q$ such that \[ p^mq^n = (p+q)^2 +1 . \]