Found problems: 1148
1991 IberoAmerican, 6
Let $M$, $N$ and $P$ be three non-collinear points. Construct using straight edge and compass a triangle for which $M$ and $N$ are the midpoints of two of its sides, and $P$ is its orthocenter.
2009 Harvard-MIT Mathematics Tournament, 4
Suppose $a$, $b$ and $c$ are integers such that the greatest common divisor of $x^2+ax+b$ and $x^2+bx+c$ is $x+1$ (in the set of polynomials in $x$ with integer coefficients), and the least common multiple of $x^2+ax+b$ and $x^2+bx+c$ $x^3-4x^2+x+6$. Find $a+b+c$.
2007 Putnam, 1
Find all values of $ \alpha$ for which the curves $ y\equal{}\alpha x^2\plus{}\alpha x\plus{}\frac1{24}$ and $ x\equal{}\alpha y^2\plus{}\alpha y\plus{}\frac1{24}$ are tangent to each other.
PEN A Problems, 52
Let $d$ be any positive integer not equal to 2, 5, or 13. Show that one can find distinct $a$ and $b$ in the set $\{2,5,13,d\}$ such that $ab - 1$ is not a perfect square.
1999 India Regional Mathematical Olympiad, 7
Find the number of quadratic polynomials $ax^2 + bx +c$ which satisfy the following:
(a) $a,b,c$ are distinct;
(b) $a,b,c \in \{ 1,2,3,\cdots 1999 \}$;
(c) $x+1$ divides $ax^2 + bx+c$.
2009 Vietnam Team Selection Test, 1
Let $ a,b,c$ be positive numbers.Find $ k$ such that:
$ (k \plus{} \frac {a}{b \plus{} c})(k \plus{} \frac {b}{c \plus{} a})(k \plus{} \frac {c}{a \plus{} b}) \ge (k \plus{} \frac {1}{2})^3$
1984 IMO Longlists, 13
Prove:
(a) There are infinitely many triples of positive integers $m, n, p$ such that $4mn - m- n = p^2 - 1.$
(b) There are no positive integers $m, n, p$ such that $4mn - m- n = p^2.$
1958 AMC 12/AHSME, 39
We may say concerning the solution of
\[ |x|^2 \plus{} |x| \minus{} 6 \equal{} 0
\]
that:
$ \textbf{(A)}\ \text{there is only one root}\qquad
\textbf{(B)}\ \text{the sum of the roots is }{\plus{}1}\qquad
\textbf{(C)}\ \text{the sum of the roots is }{0}\qquad \\
\textbf{(D)}\ \text{the product of the roots is }{\plus{}4}\qquad
\textbf{(E)}\ \text{the product of the roots is }{\minus{}6}$
2005 Germany Team Selection Test, 1
Let $k$ be a fixed integer greater than 1, and let ${m=4k^2-5}$. Show that there exist positive integers $a$ and $b$ such that the sequence $(x_n)$ defined by \[x_0=a,\quad x_1=b,\quad x_{n+2}=x_{n+1}+x_n\quad\text{for}\quad n=0,1,2,\dots,\] has all of its terms relatively prime to $m$.
[i]Proposed by Jaroslaw Wroblewski, Poland[/i]
2007 Junior Balkan MO, 4
Prove that if $ p$ is a prime number, then $ 7p+3^{p}-4$ is not a perfect square.
2012 Korea National Olympiad, 3
Find all triples $(m,p,q)$ where $ m $ is a positive integer and $ p , q $ are primes.
\[ 2^m p^2 + 1 = q^5 \]
2006 Putnam, B5
For each continuous function $f: [0,1]\to\mathbb{R},$ let $I(f)=\int_{0}^{1}x^{2}f(x)\,dx$ and $J(f)=\int_{0}^{1}x\left(f(x)\right)^{2}\,dx.$ Find the maximum value of $I(f)-J(f)$ over all such functions $f.$
1990 IMO Longlists, 38
Let $\alpha$ be the positive root of the quadratic equation $x^2 = 1990x + 1$. For any $m, n \in \mathbb N$, define the operation $m*n = mn + [\alpha m][ \alpha n]$, where $[x]$ is the largest integer no larger than $x$. Prove that $(p*q)*r = p*(q*r)$ holds for all $p, q, r \in \mathbb N.$
1989 AIME Problems, 6
Two skaters, Allie and Billie, are at points $A$ and $B$, respectively, on a flat, frozen lake. The distance between $A$ and $B$ is $100$ meters. Allie leaves $A$ and skates at a speed of $8$ meters per second on a straight line that makes a $60^\circ$ angle with $AB$. At the same time Allie leaves $A$, Billie leaves $B$ at a speed of $7$ meters per second and follows the straight path that produces the earliest possible meeting of the two skaters, given their speeds. How many meters does Allie skate before meeting Billie?
[asy]
defaultpen(linewidth(0.8));
draw((100,0)--origin--60*dir(60), EndArrow(5));
label("$A$", origin, SW);
label("$B$", (100,0), SE);
label("$100$", (50,0), S);
label("$60^\circ$", (15,0), N);[/asy]
2008 Harvard-MIT Mathematics Tournament, 4
([b]4[/b]) Let $ a$, $ b$ be constants such that $ \lim_{x\rightarrow1}\frac {(\ln(2 \minus{} x))^2}{x^2 \plus{} ax \plus{} b} \equal{} 1$. Determine the pair $ (a,b)$.
2023 Grosman Mathematical Olympiad, 4
Let $q$ be an odd prime number. Prove that it is impossible for all $(q-1)$ numbers
\[1^2+1+q, 2^2+2+q, \dots, (q-1)^2+(q-1)+q\]
to be products of two primes (not necessarily distinct).
1992 IMO Shortlist, 1
Prove that for any positive integer $ m$ there exist an infinite number of pairs of integers $ (x, y)$ such that
[i](i)[/i] $ x$ and $ y$ are relatively prime;
[i](ii)[/i] $ y$ divides $ x^2 \plus{} m$;
[i](iii)[/i] $ x$ divides $ y^2 \plus{} m.$
[i](iv)[/i] $ x \plus{} y \leq m \plus{} 1\minus{}$ (optional condition)
1988 China Team Selection Test, 1
Suppose real numbers $A,B,C$ such that for all real numbers $x,y,z$ the following inequality holds:
\[A(x-y)(x-z) + B(y-z)(y-x) + C(z-x)(z-y) \geq 0.\]
Find the necessary and sufficient condition $A,B,C$ must satisfy (expressed by means of an equality or an inequality).
2012 NIMO Problems, 10
In cyclic quadrilateral $ABXC$, $\measuredangle XAB = \measuredangle XAC$. Denote by $I$ the incenter of $\triangle ABC$ and by $D$ the projection of $I$ on $\overline{BC}$. If $AI = 25$, $ID = 7$, and $BC = 14$, then $XI$ can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a, b$. Compute $100a + b$.
[i]Proposed by Aaron Lin[/i]
2006 AMC 12/AHSME, 22
A circle of radius $ r$ is concentric with and outside a regular hexagon of side length 2. The probability that three entire sides of hexagon are visible from a randomly chosen point on the circle is 1/2. What is $ r$?
$ \textbf{(A) } 2\sqrt {2} \plus{} 2\sqrt {3} \qquad \textbf{(B) } 3\sqrt {3} \plus{} \sqrt {2} \qquad \textbf{(C) } 2\sqrt {6} \plus{} \sqrt {3} \qquad \textbf{(D) } 3\sqrt {2} \plus{} \sqrt {6}\\
\textbf{(E) } 6\sqrt {2} \minus{} \sqrt {3}$
1975 Canada National Olympiad, 7
A function $ f(x)$ is [i]periodic[/i] if there is a positive number $ p$ such that $ f(x\plus{}p) \equal{} f(x)$ for all $ x$. For example, $ \sin x$ is periodic with period $ 2 \pi$. Is the function $ \sin(x^2)$ periodic? Prove your assertion.
2003 District Olympiad, 3
Let $\displaystyle \mathcal K$ be a finite field such that the polynomial $\displaystyle X^2-5$ is irreducible over $\displaystyle \mathcal K$. Prove that:
(a) $1+1 \neq 0$;
(b) for all $\displaystyle a \in \mathcal K$, the polynomial $\displaystyle X^5+a$ is reducible over $\displaystyle \mathcal K$.
[i]Marian Andronache[/i]
[Edit $1^\circ$] I wanted to post it in "Superior Algebra - Groups, Fields, Rings, Ideals", but I accidentally put it here :blush: Can any mod move it? I'd be very grateful.
[Edit $2^\circ$] OK, thanks.
2014 Hanoi Open Mathematics Competitions, 9
Determine all real numbers $a, b,c$ such that the polynomial $f(x) = ax^2 + bx + c$ satisfies simultaneously the folloving conditions $\begin{cases} |f(x)| \le 1 \text{ for } |x | \le 1 \\
f(x) \ge 7 \text{ for } x \ge 2 \end{cases} $
2008 South africa National Olympiad, 6
Find all function pairs $(f,g)$ where each $f$ and $g$ is a function defined on the integers and with values, such that, for all integers $a$ and $b$,
\[f(a+b)=f(a)g(b)+g(a)f(b)\\
g(a+b)=g(a)g(b)-f(a)f(b).\]
2002 AMC 12/AHSME, 13
Two different positive numbers $ a$ and $ b$ each differ from their reciprocals by 1. What is $ a \plus{} b$?
\[ \textbf{(A) } 1 \qquad \textbf{(B) } 2 \qquad \textbf{(C) } \sqrt {5} \qquad \textbf{(D) } \sqrt {6} \qquad \textbf{(E) } 3
\]