This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1148

2012 Canadian Mathematical Olympiad Qualification Repechage, 6

Determine whether there exist two real numbers $a$ and $b$ such that both $(x-a)^3+ (x-b)^2+x$ and $(x-b)^3 + (x-a)^2 +x$ contain only real roots.

2004 India National Olympiad, 2

Tags: algebra , quadratic
$p > 3$ is a prime. Find all integers $a$, $b$, such that $a^2 + 3ab + 2p(a+b) + p^2 = 0$.

2014 Contests, 3

We denote the number of positive divisors of a positive integer $m$ by $d(m)$ and the number of distinct prime divisors of $m$ by $\omega(m)$. Let $k$ be a positive integer. Prove that there exist infinitely many positive integers $n$ such that $\omega(n) = k$ and $d(n)$ does not divide $d(a^2+b^2)$ for any positive integers $a, b$ satisfying $a + b = n$.

2012 USA TSTST, 6

Positive real numbers $x, y, z$ satisfy $xyz+xy+yz+zx = x+y+z+1$. Prove that \[ \frac{1}{3} \left( \sqrt{\frac{1+x^2}{1+x}} + \sqrt{\frac{1+y^2}{1+y}} + \sqrt{\frac{1+z^2}{1+z}} \right) \le \left( \frac{x+y+z}{3} \right)^{5/8} . \]

2006 Taiwan TST Round 1, 2

Let $p,q$ be two distinct odd primes. Calculate $\displaystyle \sum_{j=1}^{\frac{p-1}{2}}\left \lfloor \frac{qj}{p}\right \rfloor +\sum_{j=1}^{\frac{q-1}{2}}\left \lfloor \frac{pj}{q}\right\rfloor$.

1992 Spain Mathematical Olympiad, 3

Prove that if $a,b,c,d$ are nonnegative integers satisfying $(a+b)^2+2a+b= (c+d)^2+2c+d$, then $a = c $ and $b = d$. Show that the same is true if $a,b,c,d$ satisfy $(a+b)^2+3a+b=(c+d)^2+3c+d$, but show that there exist $a,b,c,d $ with $a \ne c$ and $b \ne d$ satisfying $(a+b)^2+4a+b = (c+d)^2+4c+d$.

2014 AMC 12/AHSME, 17

Let $P$ be the parabola with equation $y = x^2$ and let $Q = (20, 14)$ There are real numbers $r$ and $s$ such that the line through $Q$ with slope $m$ does not intersect $P$ if and only if $r < m < s$. What is $r + s?$ $ \textbf{(A)} 1 \qquad \textbf{(B)} 26 \qquad \textbf{(C)} 40 \qquad \textbf{(D)} 52 \qquad \textbf{(E)} 80 \qquad $

1988 Romania Team Selection Test, 13

Tags: quadratic , algebra
Let $a$ be a positive integer. The sequence $\{x_n\}_{n\geq 1}$ is defined by $x_1=1$, $x_2=a$ and $x_{n+2} = ax_{n+1} + x_n$ for all $n\geq 1$. Prove that $(y,x)$ is a solution of the equation \[ |y^2 - axy - x^2 | = 1 \] if and only if there exists a rank $k$ such that $(y,x)=(x_{k+1},x_k)$. [i]Serban Buzeteanu[/i]

2024 Belarus Team Selection Test, 4.2

Let $f(x)=x^2+bx+c$, where $b,c \in \mathbb{R}$ and $b>0$ Do there exist disjoint sets $A$ and $B$, whose union is $[0,1]$ and $f(A)=B$, where $f(X)=\{f(x), x \in X\}$ [i]D. Zmiaikou[/i]

1959 IMO Shortlist, 3

Let $a,b,c$ be real numbers. Consider the quadratic equation in $\cos{x}$ \[ a \cos^2{x}+b \cos{x}+c=0. \] Using the numbers $a,b,c$ form a quadratic equation in $\cos{2x}$ whose roots are the same as those of the original equation. Compare the equation in $\cos{x}$ and $\cos{2x}$ for $a=4$, $b=2$, $c=-1$.

PEN J Problems, 6

Show that if $m$ and $n$ are relatively prime positive integers, then $\phi( 5^m -1) \neq 5^{n}-1$.

1998 Turkey MO (2nd round), 1

Find all positive integers $x$ and $n$ such that ${{x}^{3}}+3367={{2}^{n}}$.

1999 India National Olympiad, 5

Tags: quadratic , algebra
Given any four distinct positive real numbers, show that one can choose three numbers $A,B,C$ from among them, such that all three quadratic equations \begin{eqnarray*} Bx^2 + x + C &=& 0\\ Cx^2 + x + A &=& 0 \\ Ax^2 + x +B &=& 0 \end{eqnarray*} have only real roots, or all three equations have only imaginary roots.

2005 Bulgaria Team Selection Test, 4

Let $a_{i}$ and $b_{i}$, where $i \in \{1,2, \dots, 2005 \}$, be real numbers such that the inequality $(a_{i}x-b_{i})^{2} \ge \sum_{j=1, j \not= i}^{2005} (a_{j}x-b_{j})$ holds for all $x \in \mathbb{R}$ and all $i \in \{1,2, \dots, 2005 \}$. Find the maximum possible number of positive numbers amongst $a_{i}$ and $b_{i}$, $i \in \{1,2, \dots, 2005 \}$.

2011 AMC 10, 19

What is the product of all the roots of the equation \[\sqrt{5|x|+8} = \sqrt{x^2-16}. \] $ \textbf{(A)}\ -64 \qquad \textbf{(B)}\ -24 \qquad \textbf{(C)}\ -9 \qquad \textbf{(D)}\ 24 \qquad \textbf{(E)}\ 576 $

2001 IMO Shortlist, 2

Consider the system \begin{align*}x + y &= z + u,\\2xy & = zu.\end{align*} Find the greatest value of the real constant $m$ such that $m \leq x/y$ for any positive integer solution $(x,y,z,u)$ of the system, with $x \geq y$.

1989 IMO Shortlist, 25

Let $ a, b \in \mathbb{Z}$ which are not perfect squares. Prove that if \[ x^2 \minus{} ay^2 \minus{} bz^2 \plus{} abw^2 \equal{} 0\] has a nontrivial solution in integers, then so does \[ x^2 \minus{} ay^2 \minus{} bz^2 \equal{} 0.\]

1998 German National Olympiad, 4

Let $a$ be a positive real number. Then prove that the polynomial \[ p(x)=a^3x^3+a^2x^2+ax+a \] has integer roots if and only if $a=1$ and determine those roots.

2003 Korea Junior Math Olympiad, 2

$a, b$ are odd numbers that satisfy $(a-b)^2 \le 8\sqrt {ab}$. For $n=ab$, show that the equation $$x^2-2([\sqrt n]+1)x+n=0$$ has two integral solutions. $[r]$ denotes the biggest integer, not strictly bigger than $r$.

2001 Federal Competition For Advanced Students, Part 2, 2

Determine all integers $m$ for which all solutions of the equation $3x^3-3x^2+m = 0$ are rational.

2013-2014 SDML (High School), 10

Tags: quadratic
The sum $$\frac{1}{1+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\cdots+\frac{1}{\sqrt{2n-1}+\sqrt{2n+1}}$$ is a root of the quadratic $x^2+x+c$. What is $c$ in terms of $n$? $\text{(A) }-\frac{n}{2}\qquad\text{(B) }2n\qquad\text{(C) }-2n\qquad\text{(D) }n+\frac{1}{2}\qquad\text{(E) }n-2$

2019 AMC 12/AHSME, 21

How many quadratic polynomials with real coefficients are there such that the set of roots equals the set of coefficients? (For clarification: If the polynomial is $ax^2+bx+c,a\neq 0,$ and the roots are $r$ and $s,$ then the requirement is that $\{a,b,c\}=\{r,s\}$.) $\textbf{(A) } 3 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } 6 \qquad\textbf{(E) } \text{infinitely many}$

2010 AMC 12/AHSME, 23

Monic quadratic polynomials $ P(x)$ and $ Q(x)$ have the property that $ P(Q(x))$ has zeroes at $ x\equal{}\minus{}23,\minus{}21,\minus{}17, \text{and} \minus{}15$, and $ Q(P(x))$ has zeroes at $ x\equal{}\minus{}59, \minus{}57, \minus{}51, \text{and} \minus{}49$. What is the sum of the minimum values of $ P(x)$ and $ Q(x)$? $ \textbf{(A)}\ \text{\minus{}100} \qquad \textbf{(B)}\ \text{\minus{}82} \qquad \textbf{(C)}\ \text{\minus{}73} \qquad \textbf{(D)}\ \text{\minus{}64} \qquad \textbf{(E)}\ 0$

2002 Germany Team Selection Test, 1

Determine the number of all numbers which are represented as $x^2+y^2$ with $x, y \in \{1, 2, 3, \ldots, 1000\}$ and which are divisible by 121.

1959 AMC 12/AHSME, 8

The value of $x^2-6x+13$ can never be less than: $ \textbf{(A)}\ 4 \qquad\textbf{(B)}\ 4.5 \qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 7\qquad\textbf{(E)}\ 13 $