Found problems: 1148
2004 AMC 10, 18
A sequence of three real numbers forms an arithmetic progression with a first term of $ 9$. If $ 2$ is added to the second term and $ 20$ is added to the third term, the three resulting numbers form a geometric progression. What is the smallest possible value for the third term of the geometric progression?
$ \textbf{(A)}\ 1\qquad
\textbf{(B)}\ 4\qquad
\textbf{(C)}\ 36\qquad
\textbf{(D)}\ 49\qquad
\textbf{(E)}\ 81$
2013 Ukraine Team Selection Test, 4
Call admissible a set $A$ of integers that has the following property:
If $x,y \in A$ (possibly $x=y$) then $x^2+kxy+y^2 \in A$ for every integer $k$.
Determine all pairs $m,n$ of nonzero integers such that the only admissible set containing both $m$ and $n$ is the set of all integers.
[i]Proposed by Warut Suksompong, Thailand[/i]
2005 Taiwan TST Round 1, 3
$n$ teams take part in a tournament, in which every two teams compete exactly once, and that no draws are possible. It is known that for any two teams, there exists another team which defeated both of the two teams. Find all $n$ for which this is possible.
1993 AIME Problems, 13
Jenny and Kenny are walking in the same direction, Kenny at 3 feet per second and Jenny at 1 foot per second, on parallel paths that are 200 feet apart. A tall circular building 100 feet in diameter is centered midway between the paths. At the instant when the building first blocks the line of sight between Jenny and Kenny, they are 200 feet apart. Let $t$ be the amount of time, in seconds, before Jenny and Kenny can see each other again. If $t$ is written as a fraction in lowest terms, what is the sum of the numerator and denominator?
2013 IMC, 1
Let $\displaystyle{z}$ be a complex number with $\displaystyle{\left| {z + 1} \right| > 2}$. Prove that $\displaystyle{\left| {{z^3} + 1} \right| > 1}$.
[i]Proposed by Walther Janous and Gerhard Kirchner, Innsbruck.[/i]
2009 Baltic Way, 7
Suppose that for a prime number $p$ and integers $a,b,c$ the following holds:
\[6\mid p+1,\quad p\mid a+b+c,\quad p\mid a^4+b^4+c^4.\]
Prove that $p\mid a,b,c$.
2006 Estonia Team Selection Test, 1
Let $k$ be any fixed positive integer. Let's look at integer pairs $(a, b)$, for which the quadratic equations $x^2 - 2ax + b = 0$ and $y^2 + 2ay + b = 0$ are real solutions (not necessarily different), which can be denoted by $x_1, x_2$ and $y_1, y_2$, respectively, in such an order that the equation $x_1 y_1 - x_2 y_2 = 4k$.
a) Find the largest possible value of the second component $b$ of such a pair of numbers ($a, b)$.
b) Find the sum of the other components of all such pairs of numbers.
2020 GQMO, 1
Find all quadruples of real numbers $(a,b,c,d)$ such that the equalities
\[X^2 + a X + b = (X-a)(X-c) \text{ and } X^2 + c X + d = (X-b)(X-d)\]
hold for all real numbers $X$.
[i]Morteza Saghafian, Iran[/i]
2006 AIME Problems, 5
When rolling a certain unfair six-sided die with faces numbered $1, 2, 3, 4, 5$, and $6$, the probability of obtaining face $F$ is greater than $\frac{1}{6}$, the probability of obtaining the face opposite is less than $\frac{1}{6}$, the probability of obtaining any one of the other four faces is $\frac{1}{6}$, and the sum of the numbers on opposite faces is $7$. When two such dice are rolled, the probability of obtaining a sum of $7$ is $\frac{47}{288}$. Given that the probability of obtaining face $F$ is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers, find $m+n$.
2010 All-Russian Olympiad, 1
Let $a \neq b a,b \in \mathbb{R}$ such that $(x^2+20ax+10b)(x^2+20bx+10a)=0$ has no roots for $x$. Prove that $20(b-a)$ is not an integer.
2007 Balkan MO Shortlist, C3
Three travel companies provide transportation between $n$ cities, such that each connection between a pair of cities is covered by one company only. Prove that, for $n \geq 11$, there must exist a round-trip through some four cities, using the services of a same company, while for $n < 11$ this is not anymore necessarily true.
[i]Dan Schwarz[/i]
2006 IMC, 5
Let $a, b, c, d$ three strictly positive real numbers such that \[a^{2}+b^{2}+c^{2}=d^{2}+e^{2},\] \[a^{4}+b^{4}+c^{4}=d^{4}+e^{4}.\] Compare \[a^{3}+b^{3}+c^{3}\] with \[d^{3}+e^{3},\]
1979 Brazil National Olympiad, 2
The remainder on dividing the polynomial $p(x)$ by $x^2 - (a+b)x + ab$ (where $a \not = b$) is $mx + n$. Find the coefficients $m, n$ in terms of $a, b$. Find $m, n$ for the case $p(x) = x^{200}$ divided by $x^2 - x - 2$ and show that they are integral.
1968 AMC 12/AHSME, 28
If the arithmetic mean of $a$ and $b$ is double their geometric mean, with $a>b>0$, then a possible value for the ratio $\frac{a}{b}$, to the nearest integer, is
$\textbf{(A)}\ 5 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 11 \qquad\textbf{(D)}\ 14 \qquad\textbf{(E)}\ \text{none of these} $
2009 Indonesia TST, 1
Find the smallest odd integer $ k$ such that: for every $ 3\minus{}$degree polynomials $ f$ with integer coefficients, if there exist $ k$ integer $ n$ such that $ |f(n)|$ is a prime number, then $ f$ is irreducible in $ \mathbb{Z}[n]$.
2004 IMO Shortlist, 4
Let $k$ be a fixed integer greater than 1, and let ${m=4k^2-5}$. Show that there exist positive integers $a$ and $b$ such that the sequence $(x_n)$ defined by \[x_0=a,\quad x_1=b,\quad x_{n+2}=x_{n+1}+x_n\quad\text{for}\quad n=0,1,2,\dots,\] has all of its terms relatively prime to $m$.
[i]Proposed by Jaroslaw Wroblewski, Poland[/i]
2002 SNSB Admission, 3
Classify up to homeomorphism the topological spaces of the support of functions that are real quadratic polynoms of three variables and and irreducible over the set of real numbers.
2013 Romania Team Selection Test, 3
Let $S$ be the set of all rational numbers expressible in the form \[\frac{(a_1^2+a_1-1)(a_2^2+a_2-1)\ldots (a_n^2+a_n-1)}{(b_1^2+b_1-1)(b_2^2+b_2-1)\ldots (b_n^2+b_n-1)}\] for some positive integers $n, a_1, a_2 ,\ldots, a_n, b_1, b_2, \ldots, b_n$. Prove that there is an infinite number of primes in $S$.
PEN B Problems, 1
Let $n$ be a positive integer. Show that there are infinitely many primes $p$ such that the smallest positive primitive root of $p$ is greater than $n$.
1973 AMC 12/AHSME, 16
If the sum of all the angles except one of a convex polygon is $ 2190^{\circ}$, then the number of sides of the polygon must be
$ \textbf{(A)}\ 13 \qquad
\textbf{(B)}\ 15 \qquad
\textbf{(C)}\ 17 \qquad
\textbf{(D)}\ 19 \qquad
\textbf{(E)}\ 21$
2013 Stars Of Mathematics, 3
Consider the sequence $(a^n + 1)_{n\geq 1}$, with $a>1$ a fixed integer.
i) Prove there exist infinitely many primes, each dividing some term of the sequence.
ii) Prove there exist infinitely many primes, none dividing any term of the sequence.
[i](Dan Schwarz)[/i]
1995 AMC 12/AHSME, 28
Two parallel chords in a circle have lengths $10$ and $14$, and the distance between them is $6$. The chord parallel to these chords and midway between them is of length $\sqrt{a}$ where $a$ is
[asy]
// note: diagram deliberately not to scale -- azjps
void htick(pair A, pair B, real r){ D(A--B); D(A-(r,0)--A+(r,0)); D(B-(r,0)--B+(r,0)); }
size(120); pathpen = linewidth(0.7); pointpen = black+linewidth(3);
real min = -0.6, step = 0.5;
pair[] A, B; D(unitcircle);
for(int i = 0; i < 3; ++i) {
A.push(intersectionpoints((-9,min+i*step)--(9,min+i*step),unitcircle)[0]); B.push(intersectionpoints((-9,min+i*step)--(9,min+i*step),unitcircle)[1]);
D(D(A[i])--D(B[i]));
}
MP("10",(A[0]+B[0])/2,N);
MP("\sqrt{a}",(A[1]+B[1])/2,N);
MP("14",(A[2]+B[2])/2,N);
htick((B[1].x+0.1,B[0].y),(B[1].x+0.1,B[2].y),0.06); MP("6",(B[1].x+0.1,B[0].y/2+B[2].y/2),E);[/asy]
$\textbf{(A)}\ 144 \qquad
\textbf{(B)}\ 156 \qquad
\textbf{(C)}\ 168 \qquad
\textbf{(D)}\ 176 \qquad
\textbf{(E)}\ 184$
2013 China Team Selection Test, 2
Prove that: there exists a positive constant $K$, and an integer series $\{a_n\}$, satisfying:
$(1)$ $0<a_1<a_2<\cdots <a_n<\cdots $;
$(2)$ For any positive integer $n$, $a_n<1.01^n K$;
$(3)$ For any finite number of distinct terms in $\{a_n\}$, their sum is not a perfect square.
PEN H Problems, 39
Let $A, B, C, D, E$ be integers, $B \neq 0$ and $F=AD^{2}-BCD+B^{2}E \neq 0$. Prove that the number $N$ of pairs of integers $(x, y)$ such that \[Ax^{2}+Bxy+Cx+Dy+E=0,\] satisfies $N \le 2 d( \vert F \vert )$, where $d(n)$ denotes the number of positive divisors of positive integer $n$.
1979 IMO Longlists, 42
Let a quadratic polynomial $g(x) = ax^2 + bx + c$ be given and an integer $n \ge 1$. Prove that there exists at most one polynomial $f(x)$ of $n$th degree such that $f(g(x)) = g(f(x)).$