This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1148

2007 All-Russian Olympiad Regional Round, 9.1

Pete chooses $ 1004$ monic quadratic polynomial $ f_{1},\cdots,f_{1004}$, such that each integer from $ 0$ to $ 2007$ is a root of at least one of them. Vasya considers all equations of the form $ f_{i}\equal{}f_{j}(i\not \equal{}j)$ and computes their roots; for each such root , Pete has to pay to Vasya $ 1$ ruble . Find the least possible value of Vasya's income.

2015 India Regional MathematicaI Olympiad, 2

Let $P(x) = x^2 + ax + b$ be a quadratic polynomial with real coefficients. Suppose there are real numbers $ s \neq t$ such that $P(s) = t$ and $P(t) = s$. Prove that $b-st$ is a root of $x^2 + ax + b - st$.

2006 Junior Tuymaada Olympiad, 5

The quadratic trinomials $ f $, $ g $ and $ h $ are such that for every real $ x $ the numbers $ f (x) $, $ g (x) $ and $ h (x) $ are the lengths of the sides of some triangles, and the numbers $ f (x) -1 $, $ g (x) -1 $ and $ h (x) -1 $ are not the lengths of the sides of the triangle. Prove that at least of the polynomials $ f + g-h $, $ f + h-g $, $ g + h-f $ is constant.

2008 IMC, 3

Let $p$ be a polynomial with integer coefficients and let $a_1<a_2<\cdots <a_k$ be integers. Given that $p(a_i)\ne 0\forall\; i=1,2,\cdots, k$. [list] (a) Prove $\exists\; a\in \mathbb{Z}$ such that \[ p(a_i)\mid p(a)\;\;\forall i=1,2,\dots ,k \] (b) Does there exist $a\in \mathbb{Z}$ such that \[ \prod_{i=1}^{k}p(a_i)\mid p(a) \][/list]

PEN O Problems, 46

Suppose $p$ is a prime with $p \equiv 3 \; \pmod{4}$. Show that for any set of $p-1$ consecutive integers, the set cannot be divided two subsets so that the product of the members of the one set is equal to the product of the members of the other set.

2012 Baltic Way, 4

Prove that for infinitely many pairs $(a,b)$ of integers the equation \[x^{2012} = ax + b\] has among its solutions two distinct real numbers whose product is 1.

1999 Romania Team Selection Test, 16

Let $X$ be a set with $n$ elements, and let $A_{1}$, $A_{2}$, ..., $A_{m}$ be subsets of $X$ such that: 1) $|A_{i}|=3$ for every $i\in\left\{1,2,...,m\right\}$; 2) $|A_{i}\cap A_{j}|\leq 1$ for all $i,j\in\left\{1,2,...,m\right\}$ such that $i \neq j$. Prove that there exists a subset $A$ of $X$ such that $A$ has at least $\left[\sqrt{2n}\right]$ elements, and for every $i\in\left\{1,2,...,m\right\}$, the set $A$ does not contain $A_{i}$. [i]Alternative formulation.[/i] Let $X$ be a finite set with $n$ elements and $A_{1},A_{2},\ldots, A_{m}$ be three-elements subsets of $X$, such that $|A_{i}\cap A_{j}|\leq 1$, for every $i\neq j$. Prove that there exists $A\subseteq X$ with $|A|\geq \lfloor \sqrt{2n}\rfloor$, such that none of $A_{i}$'s is a subset of $A$.

2014 AIME Problems, 14

Let $m$ be the largest real solution to the equation \[\frac{3}{x-3}+\frac{5}{x-5}+\frac{17}{x-17}+\frac{19}{x-19}= x^2-11x-4.\] There are positive integers $a,b,c$ such that $m = a + \sqrt{b+\sqrt{c}}$. Find $a+b+c$.

2001 China Western Mathematical Olympiad, 1

Find all real numbers $ x$ such that $ \lfloor x^3 \rfloor \equal{} 4x \plus{} 3$.

PEN A Problems, 64

The last digit of the number $x^2 +xy+y^2$ is zero (where $x$ and $y$ are positive integers). Prove that two last digits of this numbers are zeros.

2013 Iran Team Selection Test, 12

Let $ABCD$ be a cyclic quadrilateral that inscribed in the circle $\omega$.Let $I_{1},I_{2}$ and $r_{1},r_{2}$ be incenters and radii of incircles of triangles $ACD$ and $ABC$,respectively.assume that $r_{1}=r_{2}$. let $\omega'$ be a circle that touches $AB,AD$ and touches $\omega$ at $T$. tangents from $A,T$ to $\omega$ meet at the point $K$.prove that $I_{1},I_{2},K$ lie on a line.

1989 AMC 12/AHSME, 8

For how many integers $n$ between 1 and 100 does $x^2+x-n$ factor into the product of two linear factors with integer coefficients? $\text{(A)} \ 0 \qquad \text{(B)} \ 1 \qquad \text{(C)} \ 2 \qquad \text{(D)} \ 9 \qquad \text{(E)} \ 10$

1969 IMO Longlists, 63

$(SWE 6)$ Prove that there are infinitely many positive integers that cannot be expressed as the sum of squares of three positive integers.

2014 Contests, 1

Tags: quadratic
Given that $x$ and $y$ are nonzero real numbers such that $x+\frac{1}{y}=10$ and $y+\frac{1}{x}=\frac{5}{12}$, find all possible values of $x$.

MathLinks Contest 7th, 3.2

Prove that for positive integers $ x,y,z$ the number $ x^2 \plus{} y^2 \plus{} z^2$ is not divisible by $ 3(xy \plus{} yz \plus{} zx)$.

2012 Dutch BxMO/EGMO TST, 1

Do there exist quadratic polynomials $P(x)$ and $Q(x)$ with real coeffcients such that the polynomial $P(Q(x))$ has precisely the zeros $x = 2, x = 3, x =5$ and $x = 7$?

2010 Princeton University Math Competition, 6

Define $\displaystyle{f(x) = x + \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x + \ldots}}}}}$. Find the smallest integer $x$ such that $f(x)\ge50\sqrt{x}$. (Edit: The official question asked for the "smallest integer"; the intended question was the "smallest positive integer".)

2007 AIME Problems, 8

A rectangular piece of of paper measures 4 units by 5 units. Several lines are drawn parallel to the edges of the paper. A rectangle determined by the intersections of some of these lines is called [i]basic [/i]if (i) all four sides of the rectangle are segments of drawn line segments, and (ii) no segments of drawn lines lie inside the rectangle. Given that the total length of all lines drawn is exactly 2007 units, let $N$ be the maximum possible number of basic rectangles determined. Find the remainder when $N$ is divided by 1000.

2012 Belarus Team Selection Test, 2

Let $A_1A_2A_3A_4$ be a non-cyclic quadrilateral. Let $O_1$ and $r_1$ be the circumcentre and the circumradius of the triangle $A_2A_3A_4$. Define $O_2,O_3,O_4$ and $r_2,r_3,r_4$ in a similar way. Prove that \[\frac{1}{O_1A_1^2-r_1^2}+\frac{1}{O_2A_2^2-r_2^2}+\frac{1}{O_3A_3^2-r_3^2}+\frac{1}{O_4A_4^2-r_4^2}=0.\] [i]Proposed by Alexey Gladkich, Israel[/i]

1979 AMC 12/AHSME, 27

An ordered pair $( b , c )$ of integers, each of which has absolute value less than or equal to five, is chosen at random, with each such ordered pair having an equal likelihood of being chosen. What is the probability that the equation $x^ 2 + bx + c = 0$ will [i]not[/i] have distinct positive real roots? $\textbf{(A) }\frac{106}{121}\qquad\textbf{(B) }\frac{108}{121}\qquad\textbf{(C) }\frac{110}{121}\qquad\textbf{(D) }\frac{112}{121}\qquad\textbf{(E) }\text{none of these}$

2008 National Olympiad First Round, 18

Tags: quadratic
How many positive integers $n$ are there such that $\sqrt{n+\sqrt{n+\sqrt{n+\sqrt{n}}}}$ is an integer? $ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ \text{Infinitely many} \qquad\textbf{(E)}\ \text{None of the above} $

2009 Brazil National Olympiad, 2

Let $ q \equal{} 2p\plus{}1$, $ p, q > 0$ primes. Prove that there exists a multiple of $ q$ whose digits sum in decimal base is positive and at most $ 3$.

2005 Czech-Polish-Slovak Match, 3

Find all integers $n \ge 3$ for which the polynomial \[W(x) = x^n - 3x^{n-1} + 2x^{n-2} + 6\] can be written as a product of two non-constant polynomials with integer coefficients.

2007 Today's Calculation Of Integral, 218

For any quadratic functions $ f(x)$ such that $ f'(2)\equal{}1$, evaluate $ \int_{2\minus{}\pi}^{2\plus{}\pi}f(x)\sin\left(\frac{x}{2}\minus{}1\right) dx$.

2008 Harvard-MIT Mathematics Tournament, 16

Point $ A$ lies at $ (0, 4)$ and point $ B$ lies at $ (3, 8)$. Find the $ x$-coordinate of the point $ X$ on the $ x$-axis maximizing $ \angle AXB$.