Found problems: 1148
2010 Contests, 525
Let $ a,\ b$ be real numbers satisfying $ \int_0^1 (ax\plus{}b)^2dx\equal{}1$.
Determine the values of $ a,\ b$ for which $ \int_0^1 3x(ax\plus{}b)\ dx$ is maximized.
1950 AMC 12/AHSME, 3
The sum of the roots of the equation $ 4x^2\plus{}5\minus{}8x\equal{}0$ is equal to:
$\textbf{(A)}\ 8 \qquad
\textbf{(B)}\ -5 \qquad
\textbf{(C)}\ -\dfrac{5}{4} \qquad
\textbf{(D)}\ -2 \qquad
\textbf{(E)}\ \text{None of these}$
2002 Germany Team Selection Test, 1
Let $P$ denote the set of all ordered pairs $ \left(p,q\right)$ of nonnegative integers. Find all functions $f: P \rightarrow \mathbb{R}$ satisfying
\[ f(p,q) \equal{} \begin{cases} 0 & \text{if} \; pq \equal{} 0, \\
1 \plus{} \frac{1}{2} f(p+1,q-1) \plus{} \frac{1}{2} f(p-1,q+1) & \text{otherwise} \end{cases}
\]
Compare IMO shortlist problem 2001, algebra A1 for the three-variable case.
1950 AMC 12/AHSME, 17
The formula which expresses the relationship between $x$ and $y$ as shown in the accompanying table is:
\[ \begin{tabular}[t]{|c|c|c|c|c|c|}\hline
x&0&1&2&3&4\\\hline
y&100&90&70&40&0\\\hline
\end{tabular}\]
$\textbf{(A)}\ y=100-10x \qquad
\textbf{(B)}\ y=100-5x^2 \qquad
\textbf{(C)}\ y=100-5x-5x^2 \qquad\\
\textbf{(D)}\ y=20-x-x^2 \qquad
\textbf{(E)}\ \text{None of these}$
2009 Tuymaada Olympiad, 2
$ P(x)$ is a quadratic trinomial. What maximum number of terms equal to the sum of the two preceding terms can occur in the sequence $ P(1)$, $ P(2)$, $ P(3)$, $ \dots?$
[i]Proposed by A. Golovanov[/i]
2000 Spain Mathematical Olympiad, 1
Consider the polynomials
\[P(x) = x^4 + ax^3 + bx^2 + cx + 1 \quad \text{and} \quad Q(x) = x^4 + cx^3 + bx^2 + ax + 1.\]
Find the conditions on the parameters $a, b, $c with $a\neq c$ for which $P(x)$ and $Q(x)$ have two common roots and, in such cases, solve the equations $P(x) = 0$ and $Q(x) = 0.$
1995 India Regional Mathematical Olympiad, 5
Show that for any triangle $ABC$, the following inequality is true:
\[ a^2 + b^2 +c^2 > \sqrt{3} max \{ |a^2 - b^2|, |b^2 -c^2|, |c^2 -a^2| \} . \]
2006 AMC 12/AHSME, 17
Square $ ABCD$ has side length $ s$, a circle centered at $ E$ has radius $ r$, and $ r$ and $ s$ are both rational. The circle passes through $ D$, and $ D$ lies on $ \overline{BE}$. Point $ F$ lies on the circle, on the same side of $ \overline{BE}$ as $ A$. Segment $ AF$ is tangent to the circle, and $ AF \equal{} \sqrt {9 \plus{} 5\sqrt {2}}$. What is $ r/s$?
[asy]unitsize(6mm);
defaultpen(linewidth(.8pt)+fontsize(10pt));
dotfactor=3;
pair B=(0,0), C=(3,0), D=(3,3), A=(0,3);
pair Ep=(3+5*sqrt(2)/6,3+5*sqrt(2)/6);
pair F=intersectionpoints(Circle(A,sqrt(9+5*sqrt(2))),Circle(Ep,5/3))[0];
pair[] dots={A,B,C,D,Ep,F};
draw(A--F);
draw(Circle(Ep,5/3));
draw(A--B--C--D--cycle);
dot(dots);
label("$A$",A,NW);
label("$B$",B,SW);
label("$C$",C,SE);
label("$D$",D,SW);
label("$E$",Ep,E);
label("$F$",F,NW);[/asy]$ \textbf{(A) } \frac {1}{2}\qquad \textbf{(B) } \frac {5}{9}\qquad \textbf{(C) } \frac {3}{5}\qquad \textbf{(D) } \frac {5}{3}\qquad \textbf{(E) } \frac {9}{5}$
1985 ITAMO, 4
A small square is constructed inside a square of area 1 by dividing each side of the unit square into $n$ equal parts, and then connecting the vertices to the division points closest to the opposite vertices. Find the value of $n$ if the the area of the small square is exactly 1/1985.
[asy]
size(200);
pair A=(0,1), B=(1,1), C=(1,0), D=origin;
draw(A--B--C--D--A--(1,1/6));
draw(C--(0,5/6)^^B--(1/6,0)^^D--(5/6,1));
pair point=( 0.5 , 0.5 );
//label("$A$", A, dir(point--A));
//label("$B$", B, dir(point--B));
//label("$C$", C, dir(point--C));
//label("$D$", D, dir(point--D));
label("$1/n$", (11/12,1), N, fontsize(9));[/asy]
2013 Romanian Master of Mathematics, 1
For a positive integer $a$, define a sequence of integers $x_1,x_2,\ldots$ by letting $x_1=a$ and $x_{n+1}=2x_n+1$ for $n\geq 1$. Let $y_n=2^{x_n}-1$. Determine the largest possible $k$ such that, for some positive integer $a$, the numbers $y_1,\ldots,y_k$ are all prime.
2000 Harvard-MIT Mathematics Tournament, 16
Solve for real $x,y$:
$x+y=2$
$x^5+y^5=82$
2012 Tuymaada Olympiad, 4
Let $p=1601$. Prove that if
\[\dfrac {1} {0^2+1}+\dfrac{1}{1^2+1}+\cdots+\dfrac{1}{(p-1)^2+1}=\dfrac{m} {n},\]
where we only sum over terms with denominators not divisible by $p$ (and the fraction $\dfrac {m} {n}$ is in reduced terms) then $p \mid 2m+n$.
[i]Proposed by A. Golovanov[/i]
2002 AIME Problems, 6
The solutions to the system of equations
\begin{eqnarray*} \log_{225}{x}+\log_{64}{y} &=& 4\\ \log_x{225}-\log_y{64} &=& 1 \end{eqnarray*}
are $(x_1,y_1)$ and $(x_2, y_2).$ Find $\log_{30}{(x_1y_1x_2y_2)}.$
PEN P Problems, 17
Let $p$ be a prime number of the form $4k+1$. Suppose that $r$ is a quadratic residue of $p$ and that $s$ is a quadratic nonresidue of $p$. Show that $p=a^{2}+b^{2}$, where \[a=\frac{1}{2}\sum^{p-1}_{i=1}\left( \frac{i(i^{2}-r)}{p}\right), b=\frac{1}{2}\sum^{p-1}_{i=1}\left( \frac{i(i^{2}-s)}{p}\right).\] Here, $\left( \frac{k}{p}\right)$ denotes the Legendre Symbol.
2013 India Regional Mathematical Olympiad, 4
A polynomial is called Fermat polynomial if it can be written as the sum of squares of two polynomials with integer coefficients. Suppose that $f(x)$ is a Fermat polynomial such that $f(0)=1000$. Prove that $f(x)+2x$ is not a fermat polynomial
2005 USAMTS Problems, 3
Let $r$ be a nonzero real number. The values of $z$ which satisfy the equation \[ r^4z^4 + (10r^6-2r^2)z^2-16r^5z+(9r^8+10r^4+1) = 0 \] are plotted on the complex plane (i.e. using the real part of each root as the x-coordinate
and the imaginary part as the y-coordinate). Show that the area of the convex quadrilateral with these points as vertices is independent of $r$, and find this area.
2014 Harvard-MIT Mathematics Tournament, 12
Find a nonzero monic polynomial $P(x)$ with integer coefficients and minimal degree such that $P(1-\sqrt[3]2+\sqrt[3]4)=0$. (A polynomial is called $\textit{monic}$ if its leading coefficient is $1$.)
2013 Stanford Mathematics Tournament, 7
Find all real $x$ that satisfy $\sqrt[3]{20x+\sqrt[3]{20x+13}}=13$.
2009 Middle European Mathematical Olympiad, 4
Determine all integers $ k\ge 2$ such that for all pairs $ (m$, $ n)$ of different positive integers not greater than $ k$, the number $ n^{n\minus{}1}\minus{}m^{m\minus{}1}$ is not divisible by $ k$.
2007 China Team Selection Test, 1
$ u,v,w > 0$,such that $ u \plus{} v \plus{} w \plus{} \sqrt {uvw} \equal{} 4$
prove that $ \sqrt {\frac {uv}{w}} \plus{} \sqrt {\frac {vw}{u}} \plus{} \sqrt {\frac {wu}{v}}\geq u \plus{} v \plus{} w$
2007 German National Olympiad, 6
For two real numbers a,b the equation: $x^{4}-ax^{3}+6x^{2}-bx+1=0$ has four solutions (not necessarily distinct). Prove that $a^{2}+b^{2}\ge{32}$
2015 All-Russian Olympiad, 1
Real numbers $a$ and $b$ are chosen so that each of two quadratic trinomials $x^2+ax+b$ and $x^2+bx+a$ has two distinct real roots,and the product of these trinomials has exactly three distinct real roots.Determine all possible values of the sum of these three roots. [i](S.Berlov)[/i]
2004 Singapore Team Selection Test, 3
Find all functions $ f: \mathbb{R} \to \mathbb{R}$ satisfying
\[ f\left(\frac {x \plus{} y}{x \minus{} y}\right) \equal{} \frac {f\left(x\right) \plus{} f\left(y\right)}{f\left(x\right) \minus{} f\left(y\right)}
\]
for all $ x \neq y$.
2004 Flanders Junior Olympiad, 1
Two $5\times1$ rectangles have 2 vertices in common as on the picture.
(a) Determine the area of overlap
(b) Determine the length of the segment between the other 2 points of intersection, $A$ and $B$.
[img]https://cdn.artofproblemsolving.com/attachments/9/0/4f1721c7ccdecdfe4d9cc05a17a553a0e9f670.png[/img]
1999 Baltic Way, 4
For all positive real numbers $x$ and $y$ let
\[f(x,y)=\min\left( x,\frac{y}{x^2+y^2}\right) \]
Show that there exist $x_0$ and $y_0$ such that $f(x, y)\le f(x_0, y_0)$ for all positive $x$ and $y$, and find $f(x_0,y_0)$.