This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1148

2014 Cezar Ivănescu, 2

While there do not exist pairwise distinct real numbers $a,b,c$ satisfying $a^2+b^2+c^2 = ab+bc+ca$, there do exist complex numbers with that property. Let $a,b,c$ be complex numbers such that $a^2+b^2+c^2 = ab+bc+ca$ and $|a+b+c| = 21$. Given that $|a-b| = 2\sqrt{3}$, $|a| = 3\sqrt{3}$, compute $|b|^2+|c|^2$. [hide="Clarifications"] [list] [*] The problem should read $|a+b+c| = 21$. An earlier version of the test read $|a+b+c| = 7$; that value is incorrect. [*] $|b|^2+|c|^2$ should be a positive integer, not a fraction; an earlier version of the test read ``... for relatively prime positive integers $m$ and $n$. Find $m+n$.''[/list][/hide] [i]Ray Li[/i]

1988 India National Olympiad, 5

Show that there do not exist any distinct natural numbers $ a$, $ b$, $ c$, $ d$ such that $ a^3\plus{}b^3\equal{}c^3\plus{}d^3$ and $ a\plus{}b\equal{}c\plus{}d$.

1982 AMC 12/AHSME, 17

Tags: quadratic
How many real numbers $x$ satisfy the equation $3^{2x+2}-3^{x+3}-3^{x}+3=0$? $\textbf {(A) } 0 \qquad \textbf {(B) } 1 \qquad \textbf {(C) } 2 \qquad \textbf {(D) } 3 \qquad \textbf {(E) } 4$

2006 Vietnam Team Selection Test, 2

Given a non-isoceles triangle $ABC$ inscribes a circle $(O,R)$ (center $O$, radius $R$). Consider a varying line $l$ such that $l\perp OA$ and $l$ always intersects the rays $AB,AC$ and these intersectional points are called $M,N$. Suppose that the lines $BN$ and $CM$ intersect, and if the intersectional point is called $K$ then the lines $AK$ and $BC$ intersect. $1$, Assume that $P$ is the intersectional point of $AK$ and $BC$. Show that the circumcircle of the triangle $MNP$ is always through a fixed point. $2$, Assume that $H$ is the orthocentre of the triangle $AMN$. Denote $BC=a$, and $d$ is the distance between $A$ and the line $HK$. Prove that $d\leq\sqrt{4R^2-a^2}$ and the equality occurs iff the line $l$ is through the intersectional point of two lines $AO$ and $BC$.

2015 AMC 12/AHSME, 18

The zeroes of the function $f(x)=x^2-ax+2a$ are integers. What is the sum of all possible values of $a$? $\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }16\qquad\textbf{(D) }17\qquad\textbf{(E) }18$

2006 Polish MO Finals, 2

Find all positive integers $k$ for which number $3^k+5^k$ is a power of some integer with exponent greater than $1$.

2006 Turkey Team Selection Test, 1

Find the maximum value for the area of a heptagon with all vertices on a circle and two diagonals perpendicular.

2000 Korea - Final Round, 1

Let $p$ be a prime such that $p \equiv 1 (\text {mod}4)$. Evaluate \[\sum_{k=1}^{p-1} \left( \left \lfloor \frac{2k^2}{p}\right \rfloor - 2 \left \lfloor {\frac{k^2}{p}}\right \rfloor \right)\]

2018-2019 Fall SDPC, 6

Tags: quadratic , algebra
Alice and Bob play a game. Alice writes an equation of the form $ax^2 + bx + c =0$, choosing $a$, $b$, $c$ to be real numbers (possibly zero). Bob can choose to add (or subtract) any real number to each of $a$, $b$, $c$, resulting in a new equation. Bob wins if the resulting equation is quadratic and has two distinct real roots; Alice wins otherwise. For which choices of $a$, $b$, $c$ does Alice win, no matter what Bob does?

2020 Brazil National Olympiad, 2

The following sentece is written on a board: [center]The equation $x^2-824x+\blacksquare 143=0$ has two integer solutions.[/center] Where $\blacksquare$ represents algarisms of a blurred number on the board. What are the possible equations originally on the board?

2011 All-Russian Olympiad, 2

In the notebooks of Peter and Nick, two numbers are written. Initially, these two numbers are 1 and 2 for Peter and 3 and 4 for Nick. Once a minute, Peter writes a quadratic trinomial $f(x)$, the roots of which are the two numbers in his notebook, while Nick writes a quadratic trinomial $g(x)$ the roots of which are the numbers in [i]his[/i] notebook. If the equation $f(x)=g(x)$ has two distinct roots, one of the two boys replaces the numbers in his notebook by those two roots. Otherwise, nothing happens. If Peter once made one of his numbers 5, what did the other one of his numbers become?

2013 IFYM, Sozopol, 2

Do there exist natural numbers $a, b$ and $c$ such that $a^2+b^2+c^2$ is divisible by $2013(ab+bc+ca)$? [i]Proposed by Mahan Malihi[/i]

2014 Harvard-MIT Mathematics Tournament, 1

Tags: quadratic
Given that $x$ and $y$ are nonzero real numbers such that $x+\frac{1}{y}=10$ and $y+\frac{1}{x}=\frac{5}{12}$, find all possible values of $x$.

2001 AMC 12/AHSME, 23

A polynomial of degree four with leading coefficient 1 and integer coefficients has two zeros, both of which are integers. Which of the following can also be a zero of the polynomial? $ \textbf{(A)} \ \frac {1 \plus{} i \sqrt {11}}{2} \qquad \textbf{(B)} \ \frac {1 \plus{} i}{2} \qquad \textbf{(C)} \ \frac {1}{2} \plus{} i \qquad \textbf{(D)} \ 1 \plus{} \frac {i}{2} \qquad \textbf{(E)} \ \frac {1 \plus{} i \sqrt {13}}{2}$

2012 Bulgaria National Olympiad, 2

Let $Q(x)$ be a quadratic trinomial. Given that the function $P(x)=x^{2}Q(x)$ is increasing in the interval $(0,\infty )$, prove that: \[P(x) + P(y) + P(z) > 0\] for all real numbers $x,y,z$ such that $x+y+z>0$ and $xyz>0$.

1969 AMC 12/AHSME, 7

Tags: quadratic
If the points $(1,y_1)$ and $(-1,y_2)$ lie on the graph of $y=ax^2+bx+c$, and $y_1-y_2=-6$, then $b$ equals: $\textbf{(A) }-3\qquad \textbf{(B) }0\qquad \textbf{(C) }3\qquad \textbf{(D) }\sqrt{ac}\qquad \textbf{(E) }\dfrac{a+c}2$

2005 AIME Problems, 8

Circles $C_1$ and $C_2$ are externally tangent, and they are both internally tangent to circle $C_3$. The radii of $C_1$ and $C_2$ are $4$ and $10$, respectively, and the centers of the three circles are all collinear. A chord of $C_3$ is also a common external tangent of $C_1$ and $C_2$. Given that the length of the chord is $\frac{m\sqrt{n}}{p}$ where $m,n,$ and $p$ are positive integers, $m$ and $p$ are relatively prime, and $n$ is not divisible by the square of any prime, find $m+n+p$.

1971 Canada National Olympiad, 9

Two flag poles of height $h$ and $k$ are situated $2a$ units apart on a level surface. Find the set of all points on the surface which are so situated that the angles of elevation of the tops of the poles are equal.

PEN M Problems, 7

Prove that the sequence $ \{y_{n}\}_{n \ge 1}$ defined by \[ y_{0}=1, \; y_{n+1}= \frac{1}{2}\left( 3y_{n}+\sqrt{5y_{n}^{2}-4}\right) \] consists only of integers.

2004 AMC 12/AHSME, 14

A sequence of three real numbers forms an arithmetic progression with a first term of $ 9$. If $ 2$ is added to the second term and $ 20$ is added to the third term, the three resulting numbers form a geometric progression. What is the smallest possible value for the third term in the geometric progression? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 36 \qquad \textbf{(D)}\ 49 \qquad \textbf{(E)}\ 81$

2001 Saint Petersburg Mathematical Olympiad, 9.2

Define a quadratic trinomial to be "good", if it has two distinct real roots and all of its coefficients are distinct. Do there exist 10 positive integers such that there exist 500 good quadratic trinomials coefficients of which are among these numbers? [I]Proposed by F. Petrov[/i]

2000 Taiwan National Olympiad, 1

Suppose that for some $m,n\in\mathbb{N}$ we have $\varphi (5^m-1)=5^n-1$, where $\varphi$ denotes the Euler function. Show that $(m,n)>1$.

2015 Harvard-MIT Mathematics Tournament, 8

Find the number of ordered pairs of integers $(a,b)\in\{1,2,\ldots,35\}^2$ (not necessarily distinct) such that $ax+b$ is a "quadratic residue modulo $x^2+1$ and $35$", i.e. there exists a polynomial $f(x)$ with integer coefficients such that either of the following $\textit{equivalent}$ conditions holds: [list] [*] there exist polynomials $P$, $Q$ with integer coefficients such that $f(x)^2-(ax+b)=(x^2+1)P(x)+35Q(x)$; [*] or more conceptually, the remainder when (the polynomial) $f(x)^2-(ax+b)$ is divided by (the polynomial) $x^2+1$ is a polynomial with integer coefficients all divisible by $35$. [/list]

1988 IberoAmerican, 5

Consider all the numbers of the form $x+yt+zt^2$, with $x,y,z$ rational numbers and $t=\sqrt[3]{2}$. Prove that if $x+yt+zt^2\not= 0$, then there exist rational numbers $u,v,w$ such that \[(x+yt+z^2)(u+vt+wt^2)=1\]

2020 Brazil Undergrad MO, Problem 6

Let $f(x) = 2x^2 + x - 1, f^{0}(x) = x$, and $f^{n+1}(x) = f(f^{n}(x))$ for all real $x>0$ and $n \ge 0$ integer (that is, $f^{n}$ is $f$ iterated $n$ times). a) Find the number of distinct real roots of the equation $f^{3}(x) = x$ b) Find, for each $n \ge 0$ integer, the number of distinct real solutions of the equation $f^{n}(x) = 0$