Found problems: 248
2007 Poland - Second Round, 2
We are given a cyclic quadrilateral $ABCD \quad AB\not=CD$. Quadrilaterals $AKDL$ and $CMBN$ are rhombuses with equal sides. Prove, that $KLMN$ is cyclic
2002 Tuymaada Olympiad, 3
The points $D$ and $E$ on the circumcircle of an acute triangle $ABC$ are such that $AD=AE = BC$. Let $H$ be the common point of the altitudes of triangle $ABC$.
It is known that $AH^{2}=BH^{2}+CH^{2}$.
Prove that $H$ lies on the segment $DE$.
[i]Proposed by D. Shiryaev[/i]
2010 Contests, 2
Let $ABC$ be a triangle with $ \widehat{BAC}\neq 90^\circ $. Let $M$ be the midpoint of $BC$. We choose a variable point $D$ on $AM$. Let $(O_1)$ and $(O_2)$ be two circle pass through $ D$ and tangent to $BC$ at $B$ and $C$. The line $BA$ and $CA$ intersect $(O_1),(O_2)$ at $ P,Q$ respectively.
[b]a)[/b] Prove that tangent line at $P$ on $(O_1)$ and $Q$ on $(O_2)$ must intersect at $S$.
[b]b)[/b] Prove that $S$ lies on a fix line.
2009 APMO, 3
Let three circles $ \Gamma_1, \Gamma_2, \Gamma_3$, which are non-overlapping and mutually external, be given in the plane. For each point $ P$ in the plane, outside the three circles, construct six points $ A_1, B_1, A_2, B_2, A_3, B_3$ as follows: For each $ i \equal{} 1, 2, 3$, $ A_i, B_i$ are distinct points on the circle $ \Gamma_i$ such that the lines $ PA_i$ and $ PB_i$ are both tangents to $ \Gamma_i$. Call the point $ P$ exceptional if, from the construction, three lines $ A_1B_1, A_2 B_2, A_3 B_3$ are concurrent. Show that every exceptional point of the plane, if exists, lies on the same circle.
2011 USA TSTST, 4
Acute triangle $ABC$ is inscribed in circle $\omega$. Let $H$ and $O$ denote its orthocenter and circumcenter, respectively. Let $M$ and $N$ be the midpoints of sides $AB$ and $AC$, respectively. Rays $MH$ and $NH$ meet $\omega$ at $P$ and $Q$, respectively. Lines $MN$ and $PQ$ meet at $R$. Prove that $OA\perp RA$.
2023 Bangladesh Mathematical Olympiad, P9
Let $\Delta ABC$ be an acute angled triangle. $D$ is a point on side $BC$ such that $AD$ bisects angle $\angle BAC$. A line $l$ is tangent to the circumcircles of triangles $ADB$ and $ADC$ at point $K$ and $L$, respectively. Let $M$, $N$ and $P$ be its midpoints of $BD$, $DC$ and $KL$, respectively. Prove that $l$ is tangent to the circumcircle of $\Delta MNP$.
2010 India IMO Training Camp, 1
Let $ABC$ be a triangle in which $BC<AC$. Let $M$ be the mid-point of $AB$, $AP$ be the altitude from $A$ on $BC$, and $BQ$ be the altitude from $B$ on to $AC$. Suppose that $QP$ produced meets $AB$ (extended) at $T$. If $H$ is the orthocenter of $ABC$, prove that $TH$ is perpendicular to $CM$.
2008 Kazakhstan National Olympiad, 2
Suppose that $ B_1$ is the midpoint of the arc $ AC$, containing $ B$, in the circumcircle of $ \triangle ABC$, and let $ I_b$ be the $ B$-excircle's center. Assume that the external angle bisector of $ \angle ABC$ intersects $ AC$ at $ B_2$. Prove that $ B_2I$ is perpendicular to $ B_1I_B$, where $ I$ is the incenter of $ \triangle ABC$.
2012 Olympic Revenge, 6
Let $ABC$ be an scalene triangle and $I$ and $H$ its incenter, ortocenter respectively.
The incircle touchs $BC$, $CA$ and $AB$ at $D,E$ an $F$. $DF$ and $AC$ intersects at $K$ while $EF$ and $BC$ intersets at $M$.
Shows that $KM$ cannot be paralel to $IH$.
PS1: The original problem without the adaptation apeared at the Brazilian Olympic Revenge 2011 but it was incorrect.
PS2:The Brazilian Olympic Revenge is a competition for teachers, and the problems are created by the students.
Sorry if I had some English mistakes here.
2003 China Team Selection Test, 2
Denote by $\left(ABC\right)$ the circumcircle of a triangle $ABC$.
Let $ABC$ be an isosceles right-angled triangle with $AB=AC=1$ and $\measuredangle CAB=90^{\circ}$. Let $D$ be the midpoint of the side $BC$, and let $E$ and $F$ be two points on the side $BC$.
Let $M$ be the point of intersection of the circles $\left(ADE\right)$ and $\left(ABF\right)$ (apart from $A$).
Let $N$ be the point of intersection of the line $AF$ and the circle $\left(ACE\right)$ (apart from $A$).
Let $P$ be the point of intersection of the line $AD$ and the circle $\left(AMN\right)$.
Find the length of $AP$.
2009 China Team Selection Test, 1
Let $ ABC$ be a triangle. Point $ D$ lies on its sideline $ BC$ such that $ \angle CAD \equal{} \angle CBA.$ Circle $ (O)$ passing through $ B,D$ intersects $ AB,AD$ at $ E,F$, respectively. $ BF$ meets $ DE$ at $ G$.Denote by$ M$ the midpoint of $ AG.$ Show that $ CM\perp AO.$
Sri Lankan Mathematics Challenge Competition 2022, P4
[b]Problem 4[/b] : A point $C$ lies on a line segment $AB$ between $A$ and $B$ and circles are drawn having $AC$ and $CB$ as diameters. A common tangent line to both circles touches the circle with $AC$ as diameter at $P \neq C$ and the circle with $CB$ as diameter at $Q \neq C.$ Prove that lines $AP, BQ$ and the common tangent line to both circles at $C$ all meet at a single point which lies on the circle with $AB$ as diameter.
2008 Mexico National Olympiad, 3
The internal angle bisectors of $A$, $B$, and $C$ in $\triangle ABC$ concur at $I$ and intersect the circumcircle of $\triangle ABC$ at $L$, $M$, and $N$, respectively. The circle with diameter $IL$ intersects $BC$ at $D$ and $E$; the circle with diameter $IM$ intersects $CA$ at $F$ and $G$; the circle with diameter $IN$ intersects $AB$ at $H$ and $J$. Show that $D$, $E$, $F$, $G$, $H$, and $J$ are concyclic.
2010 Contests, 3
We are given a cyclic quadrilateral $ABCD$ with a point $E$ on the diagonal $AC$ such that $AD=AE$ and $CB=CE$. Let $M$ be the center of the circumcircle $k$ of the triangle $BDE$. The circle $k$ intersects the line $AC$ in the points $E$ and $F$. Prove that the lines $FM$, $AD$ and $BC$ meet at one point.
[i](4th Middle European Mathematical Olympiad, Individual Competition, Problem 3)[/i]
2011 IMO Shortlist, 4
Let $ABC$ be an acute triangle with circumcircle $\Omega$. Let $B_0$ be the midpoint of $AC$ and let $C_0$ be the midpoint of $AB$. Let $D$ be the foot of the altitude from $A$ and let $G$ be the centroid of the triangle $ABC$. Let $\omega$ be a circle through $B_0$ and $C_0$ that is tangent to the circle $\Omega$ at a point $X\not= A$. Prove that the points $D,G$ and $X$ are collinear.
[i]Proposed by Ismail Isaev and Mikhail Isaev, Russia[/i]
2013 IberoAmerican, 2
Let $X$ and $Y$ be the diameter's extremes of a circunference $\Gamma$ and $N$ be the midpoint of one of the arcs $XY$ of $\Gamma$. Let $A$ and $B$ be two points on the segment $XY$. The lines $NA$ and $NB$ cuts $\Gamma$ again in $C$ and $D$, respectively. The tangents to $\Gamma$ at $C$ and at $D$ meets in $P$. Let $M$ the the intersection point between $XY$ and $NP$. Prove that $M$ is the midpoint of the segment $AB$.
2010 Contests, 3
A triangle $ ABC$ is inscribed in a circle $ C(O,R)$ and has incenter $ I$. Lines $ AI,BI,CI$ meet the circumcircle $ (O)$ of triangle $ ABC$ at points $ D,E,F$ respectively. The circles with diameter $ ID,IE,IF$ meet the sides $ BC,CA, AB$ at pairs of points $ (A_1,A_2), (B_1, B_2), (C_1, C_2)$ respectively.
Prove that the six points $ A_1,A_2, B_1, B_2, C_1, C_2$ are concyclic.
Babis
2008 Iran MO (3rd Round), 4
Let $ ABC$ be an isosceles triangle with $ AB\equal{}AC$, and $ D$ be midpoint of $ BC$, and $ E$ be foot of altitude from $ C$. Let $ H$ be orthocenter of $ ABC$ and $ N$ be midpoint of $ CE$. $ AN$ intersects with circumcircle of triangle $ ABC$ at $ K$. The tangent from $ C$ to circumcircle of $ ABC$ intersects with $ AD$ at $ F$.
Suppose that radical axis of circumcircles of $ CHA$ and $ CKF$ is $ BC$. Find $ \angle BAC$.
2024 Chile National Olympiad., 3
Let \( AD \) and \( BE \) be altitudes of triangle \( \triangle ABC \) that meet at the orthocenter \( H \). The midpoints of segments \( AB \) and \( CH \) are \( X \) and \( Y \), respectively. Prove that the line \( XY \) is perpendicular to line \( DE \).
2023 Bulgaria EGMO TST, 6
Let $ABC$ be a triangle with incircle $\gamma$. The circle through $A$ and $B$ tangent to $\gamma$ touches it at $C_2$ and the common tangent at $C_2$ intersects $AB$ at $C_1$. Define the points $A_1$, $B_1$, $A_2$, $B_2$ analogously. Prove that:
a) the points $A_1$, $B_1$, $C_1$ are collinear;
b) the lines $AA_2$, $BB_2$, $CC_2$ are concurrent.
2011 Balkan MO Shortlist, G1
Let $ABCD$ be a convex quadrangle such that $AB=AC=BD$ (vertices are labelled in circular order). The lines $AC$ and $BD$ meet at point $O$, the circles $ABC$ and $ADO$ meet again at point $P$, and the lines $AP$ and $BC$ meet at the point $Q$. Show that the angles $COQ$ and $DOQ$ are equal.
2006 Tuymaada Olympiad, 3
A line $d$ is given in the plane. Let $B\in d$ and $A$ another point, not on $d$, and such that $AB$ is not perpendicular on $d$. Let $\omega$ be a variable circle touching $d$ at $B$ and letting $A$ outside, and $X$ and $Y$ the points on $\omega$ such that $AX$ and $AY$ are tangent to the circle. Prove that the line $XY$ passes through a fixed point.
[i]Proposed by F. Bakharev [/i]
2005 Austrian-Polish Competition, 5
Given is a convex quadrilateral $ABCD$ with $AB=CD$. Draw the triangles $ABE$ and $CDF$ outside $ABCD$ so that $\angle{ABE} = \angle{DCF}$ and $\angle{BAE}=\angle{FDC}$. Prove that the midpoints of $\overline{AD}$, $\overline{BC}$ and $\overline{EF}$ are collinear.
2019 India IMO Training Camp, P1
Let the points $O$ and $H$ be the circumcenter and orthocenter of an acute angled triangle $ABC.$ Let $D$ be the midpoint of $BC.$ Let $E$ be the point on the angle bisector of $\angle BAC$ such that $AE\perp HE.$ Let $F$ be the point such that $AEHF$ is a rectangle. Prove that $D,E,F$ are collinear.
2020 Bulgaria EGMO TST, 2
Let $ABC$ be an acute triangle with orthocenter $H$ and altitudes $AA_1$, $BB_1$, $CC_1$. The lines $AB$ and $A_1B_1$ intersect at $C_2$ and $\ell_C$ is the line through the midpoint of $CH$, perpendicular to $CC_2$. The lines $\ell_A$ and $\ell_B$ are defined analogously. Prove that the lines $\ell_A$, $\ell_B$ and $\ell_C$ are concurrent.