Found problems: 248
2003 IberoAmerican, 2
In a square $ABCD$, let $P$ and $Q$ be points on the sides $BC$ and $CD$ respectively, different from its endpoints, such that $BP=CQ$. Consider points $X$ and $Y$ such that $X\neq Y$, in the segments $AP$ and $AQ$ respectively. Show that, for every $X$ and $Y$ chosen, there exists a triangle whose sides have lengths $BX$, $XY$ and $DY$.
2013 China Western Mathematical Olympiad, 3
Let $ABC$ be a triangle, and $B_1,C_1$ be its excenters opposite $B,C$. $B_2,C_2$ are reflections of $B_1,C_1$ across midpoints of $AC,AB$. Let $D$ be the extouch at $BC$. Show that $AD$ is perpendicular to $B_2C_2$
2005 Harvard-MIT Mathematics Tournament, 10
Let $AB$ be a diameter of a semicircle $\Gamma$. Two circles, $\omega_1$ and $\omega_2$, externally tangent to each other and internally tangent to $\Gamma$, are tangent to the line $AB$ at $P$ and $Q$, respectively, and to semicircular arc $AB$ at $C$ and $D$, respectively, with $AP<AQ$. Suppose $F$ lies on $\Gamma$ such that $ \angle FQB = \angle CQA $ and that $ \angle ABF = 80^\circ $. Find $ \angle PDQ $ in degrees.
2005 MOP Homework, 3
Circles $S_1$ and $S_2$ meet at points $A$ and $B$. A line through $A$ is parallel to the line through the centers of $S_1$ and $S_2$ and meets $S_1$ and $S_2$ again $C$ and $D$ respectively. Circle $S_3$ having $CD$ as its diameter meets $S_1$ and $S_2$ again at $P$ and $Q$ respectively. Prove that lines $CP$, $DQ$, and $AB$ are concurent.
2014 Moldova Team Selection Test, 3
Let $\triangle ABC$ be an acute triangle and $AD$ the bisector of the angle $\angle BAC$ with $D\in(BC)$. Let $E$ and $F$ denote feet of perpendiculars from $D$ to $AB$ and $AC$ respectively. If $BF\cap CE=K$ and $\odot AKE\cap BF=L$ prove that $DL\perp BF$.
2015 IFYM, Sozopol, 8
The quadrilateral $ABCD$ is circumscribed around a circle $k$ with center $I$ and $DA\cap CB=E$, $AB\cap DC=F$. In $\Delta EAF$ and $\Delta ECF$ are inscribed circles $k_1 (I_1,r_1)$ and $k_2 (I_2,r_2)$ respectively. Prove that the middle point $M$ of $AC$ lies on the radical axis of $k_1$ and $k_2$.
1969 IMO Shortlist, 3
$(BEL 3)$ Construct the circle that is tangent to three given circles.
2012 ELMO Problems, 1
In acute triangle $ABC$, let $D,E,F$ denote the feet of the altitudes from $A,B,C$, respectively, and let $\omega$ be the circumcircle of $\triangle AEF$. Let $\omega_1$ and $\omega_2$ be the circles through $D$ tangent to $\omega$ at $E$ and $F$, respectively. Show that $\omega_1$ and $\omega_2$ meet at a point $P$ on $BC$ other than $D$.
[i]Ray Li.[/i]
2005 Tuymaada Olympiad, 7
Let $I$ be the incentre of triangle $ABC$. A circle containing the points $B$ and $C$ meets the segments $BI$ and $CI$ at points $P$ and $Q$ respectively. It is known that $BP\cdot CQ=PI\cdot QI$. Prove that the circumcircle of the triangle $PQI$ is tangent to the circumcircle of $ABC$.
[i]Proposed by S. Berlov[/i]
2010 Balkan MO Shortlist, G7
A triangle $ABC$ is given. Let $M$ be the midpoint of the side $AC$ of the triangle and $Z$ the image of point $B$ along the line $BM$. The circle with center $M$ and radius $MB$ intersects the lines $BA$ and $BC$ at the points $E$ and $G$ respectively. Let $H$ be the point of intersection of $EG$ with the line $AC$, and $K$ the point of intersection of $HZ$ with the line $EB$. The perpendicular from point $K$ to the line $BH$ intersects the lines $BZ$ and $BH$ at the points $L$ and $N$, respectively.
If $P$ is the second point of intersection of the circumscribed circles of the triangles $KZL$ and $BLN$, prove that, the lines $BZ, KN$ and $HP$ intersect at a common point.
2013 NIMO Problems, 4
Let $a,b,c$ be the answers to problems $4$, $5$, and $6$, respectively. In $\triangle ABC$, the measures of $\angle A$, $\angle B$, and $\angle C$ are $a$, $b$, $c$ in degrees, respectively. Let $D$ and $E$ be points on segments $AB$ and $AC$ with $\frac{AD}{BD} = \frac{AE}{CE} = 2013$. A point $P$ is selected in the interior of $\triangle ADE$, with barycentric coordinates $(x,y,z)$ with respect to $\triangle ABC$ (here $x+y+z=1$). Lines $BP$ and $CP$ meet line $DE$ at $B_1$ and $C_1$, respectively. Suppose that the radical axis of the circumcircles of $\triangle PDC_1$ and $\triangle PEB_1$ pass through point $A$. Find $100x$.
[i]Proposed by Evan Chen[/i]
2010 Junior Balkan Team Selection Tests - Romania, 4
Let $I$ be the incenter of scalene triangle ABC and denote by $a,$ $b$ the circles with diameters $IC$ and $IB$, respectively. If $c,$ $d$ mirror images of $a,$ $b$ in $IC$ and $IB$ prove that the circumcenter $O$ of triangle $ABC$ lies on the radical axis of $c$ and $d$.
2010 Indonesia TST, 2
Circles $ \Gamma_1$ and $ \Gamma_2$ are internally tangent to circle $ \Gamma$ at $ P$ and $ Q$, respectively. Let $ P_1$ and $ Q_1$ are on $ \Gamma_1$ and $ \Gamma_2$ respectively such that $ P_1Q_1$ is the common tangent of $ P_1$ and $ Q_1$. Assume that $ \Gamma_1$ and $ \Gamma_2$ intersect at $ R$ and $ R_1$. Define $ O_1,O_2,O_3$ as the intersection of $ PQ$ and $ P_1Q_1$, the intersection of $ PR$ and $ P_1R_1$, and the intersection $ QR$ and $ Q_1R_1$. Prove that the points $ O_1,O_2,O_3$ are collinear.
[i]Rudi Adha Prihandoko, Bandung[/i]
2011 Romania Team Selection Test, 2
Let $ABCD$ be a convex quadrangle such that $AB=AC=BD$ (vertices are labelled in circular order). The lines $AC$ and $BD$ meet at point $O$, the circles $ABC$ and $ADO$ meet again at point $P$, and the lines $AP$ and $BC$ meet at the point $Q$. Show that the angles $COQ$ and $DOQ$ are equal.
2005 Junior Balkan Team Selection Tests - Moldova, 1
Let the triangle $ABC$ with $BC$ the smallest side. Let $P$ on ($AB$) such that angle $PCB$ equals angle $BAC$. and $Q$ on side ($AC$) such that angle $QBC$ equals angle $BAC$. Show that the line passing through the circumenters of triangles $ABC$ and $APQ$ is perpendicular on $BC$.
2011 Turkey Junior National Olympiad, 2
Let $ABC$ be a triangle with $|AB|=|AC|$. $D$ is the midpoint of $[BC]$. $E$ is the foot of the altitude from $D$ to $AC$. $BE$ cuts the circumcircle of triangle $ABD$ at $B$ and $F$. $DE$ and $AF$ meet at $G$. Prove that $|DG|=|GE|$
Croatia MO (HMO) - geometry, 2011.7
Let $K$ and $L$ be the points on the semicircle with diameter $AB$. Denote intersection of $AK$ and $AL$ as $T$ and let $N$ be the point such that $N$ is on segment $AB$ and line $TN$ is perpendicular to $AB$. If $U$ is the intersection of perpendicular bisector of $AB$ an $KL$ and $V$ is a point on $KL$ such that angles $UAV$ and $UBV$ are equal. Prove that $NV$ is perpendicular to $KL$.
JBMO Geometry Collection, 2005
Let $ABC$ be an acute-angled triangle inscribed in a circle $k$. It is given that the tangent from $A$ to the circle meets the line $BC$ at point $P$. Let $M$ be the midpoint of the line segment $AP$ and $R$ be the second intersection point of the circle $k$ with the line $BM$. The line $PR$ meets again the circle $k$ at point $S$ different from $R$.
Prove that the lines $AP$ and $CS$ are parallel.
2006 Iran MO (3rd Round), 1
Prove that in triangle $ABC$, radical center of its excircles lies on line $GI$, which $G$ is Centroid of triangle $ABC$, and $I$ is the incenter.
2023 Sharygin Geometry Olympiad, 21
Let $ABCD$ be a cyclic quadrilateral; $M_{ac}$ be the midpoint of $AC$; $H_d,H_b$ be the orthocenters of $\triangle ABC,\triangle ADC$ respectively; $P_d,P_b$ be the projections of $H_d$ and $H_b$ to $BM_{ac}$ and $DM_{ac}$ respectively. Define similarly $P_a,P_c$ for the diagonal $BD$. Prove that $P_a,P_b,P_c,P_d$ are concyclic.
2008 IMO Shortlist, 1
Let $ H$ be the orthocenter of an acute-angled triangle $ ABC$. The circle $ \Gamma_{A}$ centered at the midpoint of $ BC$ and passing through $ H$ intersects the sideline $ BC$ at points $ A_{1}$ and $ A_{2}$. Similarly, define the points $ B_{1}$, $ B_{2}$, $ C_{1}$ and $ C_{2}$.
Prove that the six points $ A_{1}$, $ A_{2}$, $ B_{1}$, $ B_{2}$, $ C_{1}$ and $ C_{2}$ are concyclic.
[i]Author: Andrey Gavrilyuk, Russia[/i]
2010 Contests, 3
Let $ABCD$ be a convex quadrilateral. such that $\angle CAB = \angle CDA$ and $\angle BCA = \angle ACD$. If $M$ be the midpoint of $AB$, prove that $\angle BCM = \angle DBA$.
2005 India IMO Training Camp, 1
For a given triangle ABC, let X be a variable point on the line BC such that the point C lies between the points B and X. Prove that the radical axis of the incircles of the triangles ABX and ACX passes through a point independent of X.
This is a slight extension of the [url=http://www.mathlinks.ro/Forum/viewtopic.php?t=41033]IMO Shortlist 2004 geometry problem 7[/url] and can be found, together with the proposed solution, among the files uploaded at http://www.mathlinks.ro/Forum/viewtopic.php?t=15622 . Note that the problem was proposed by Russia. I could not find the names of the authors, but I have two particular persons under suspicion. Maybe somebody could shade some light on this...
Darij
2011 Croatia Team Selection Test, 3
Let $K$ and $L$ be the points on the semicircle with diameter $AB$. Denote intersection of $AK$ and $AL$ as $T$ and let $N$ be the point such that $N$ is on segment $AB$ and line $TN$ is perpendicular to $AB$. If $U$ is the intersection of perpendicular bisector of $AB$ an $KL$ and $V$ is a point on $KL$ such that angles $UAV$ and $UBV$ are equal. Prove that $NV$ is perpendicular to $KL$.
2007 Junior Balkan Team Selection Tests - Romania, 3
Let $ABC$ be a right triangle with $A = 90^{\circ}$ and $D \in (AC)$. Denote by $E$ the reflection of $A$ in the line $BD$ and $F$ the intersection point of $CE$ with the perpendicular in $D$ to $BC$. Prove that $AF, DE$ and $BC$ are concurrent.