This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 45

2018 Peru IMO TST, 6

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2017 IMO Shortlist, C2

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

1962 Swedish Mathematical Competition, 2

Tags: geometry , radius , square
$ABCD$ is a square side $1$. $P$ and $Q$ lie on the side $AB$ and $R$ lies on the side $CD$. What are the possible values for the circumradius of $PQR$?

2018 India IMO Training Camp, 1

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

Russian TST 2018, P1

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2008 Dutch Mathematical Olympiad, 4

Three circles $C_1,C_2,C_3$, with radii $1, 2, 3$ respectively, are externally tangent. In the area enclosed by these circles, there is a circle $C_4$ which is externally tangent to all three circles. Find the radius of $C_4$. [asy] unitsize(0.4 cm); pair[] O; real[] r; O[1] = (-12/5,16/5); r[1] = 1; O[2] = (0,5); r[2] = 2; O[3] = (0,0); r[3] = 3; O[4] = (-132/115, 351/115); r[4] = 6/23; draw(Circle(O[1],r[1])); draw(Circle(O[2],r[2])); draw(Circle(O[3],r[3])); draw(Circle(O[4],r[4])); label("$C_1$", O[1]); label("$C_2$", O[2]); label("$C_3$", O[3]); [/asy]

2018 India IMO Training Camp, 1

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

1997 Estonia National Olympiad, 3

Tags: geometry , radius , circles
The points $A, B, M$ and $N$ are on a circle with center $O$ such that the radii $OA$ and $OB$ are perpendicular to each other, and $MN$ is parallel to $AB$ and intersects the radius $OA$ at $P$. Find the radius of the circle if $|MP|= 12$ and $|P N| = 2 \sqrt{14}$

1935 Moscow Mathematical Olympiad, 011

In $\vartriangle ABC$, two straight lines drawn from an arbitrary point $D$ on $AB$ are parallel to $AC$ , $BC$ and intersect $BC$ , $AC$ at $F$ , $G$, respectively. Prove that the sum of the circumferences of the circles circumscribed around $\vartriangle ADG$ and $\vartriangle BDF$ is equal to the circumference of the circle circumscribed around $\vartriangle ABC$.

1995 Chile National Olympiad, 7

In a semicircle of radius $4$ three circles are inscribed, as indicated in the figure. Larger circles have radii $ R_1 $ and $ R_2 $, and the larger circle has radius $ r $. a) Prove that $ \dfrac {1} {\sqrt{r}} = \dfrac {1} {\sqrt{R_1}} + \dfrac {1} {\sqrt{R_2}} $ b) Prove that $ R_1 + R_2 \le 8 (\sqrt{2} -1) $ c) Prove that $ r \le \sqrt{2} -1 $ [img]https://cdn.artofproblemsolving.com/attachments/0/9/aaaa65d1f4da4883973751e1363df804b9944c.jpg[/img]

1972 Spain Mathematical Olympiad, 6

Given three circumferences of radii $r$ , $r'$ and $r''$ , each tangent externally to the other two, calculate the radius of the circle inscribed in the triangle whose vertices are their three centers.

2018 Romania Team Selection Tests, 2

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2005 Oral Moscow Geometry Olympiad, 1

Given an acute-angled triangle $ABC$. A straight line parallel to $BC$ intersects sides $AB$ and $AC$ at points $M$ and $P$, respectively. At what location of the points $M$ and $P$ will the radius of the circle circumscribed about the triangle $BMP$ be the smallest? (I. Sharygin)

2019 Yasinsky Geometry Olympiad, p5

In the triangle $ABC$ it is known that $BC = 5, AC - AB = 3$. Prove that $r <2 <r_a$ . (here $r$ is the radius of the circle inscribed in the triangle $ABC$, $r_a$ is the radius of an exscribed circle that touches the sides of $BC$). (Mykola Moroz)

1969 IMO Longlists, 44

$(MON 5)$ Find the radius of the circle circumscribed about the isosceles triangle whose sides are the solutions of the equation $x^2 - ax + b = 0$.

Durer Math Competition CD Finals - geometry, 2010.C1

Tags: radius , geometry
Dürer explains art history to his students. The following gothic window is examined. Where the center of the arc of $BC$ is $A$, and similarly the center of the arc of $AC$ is $B$. The question is how much is the radius of the circle (radius marked $r$ in the figure).[img]https://cdn.artofproblemsolving.com/attachments/5/c/28e5ee47005bfde7f925908b519099d5e28d91.png[/img]

2001 Bosnia and Herzegovina Team Selection Test, 4

In plane there are two circles with radiuses $r_1$ and $r_2$, one outside the other. There are two external common tangents on those circles and one internal common tangent. The internal one intersects external ones in points $A$ and $B$ and touches one of the circles in point $C$. Prove that $AC \cdot BC=r_1\cdot r_2$

2005 Sharygin Geometry Olympiad, 15

Given a circle centered at the origin. Prove that there is a circle of smaller radius that has no less points with integer coordinates.

2006 Thailand Mathematical Olympiad, 2

Tags: geometry , radius
Triangle $\vartriangle ABC$ has side lengths $AB = 2$, $CA = 3$ and $BC = 4$. Compute the radius of the circle centered on $BC$ that is tangent to both $AB$ and $AC$.

2002 Argentina National Olympiad, 3

In a circumference $\Gamma$ a chord $PQ$ is considered such that the segment that joins the midpoint of the smallest arc $PQ$ and the midpoint of the segment $PQ$ measures $1$. Let $\Gamma_1, \Gamma_2$ and $\Gamma_3$ be three tangent circumferences to the chord $PQ$ that are in the same half plane than the center of $\Gamma$ with respect to the line $PQ$. Furthermore, $\Gamma_1$ and $\Gamma_3$ are internally tangent to $\Gamma$ and externally tangent to$ \Gamma_2$, and the centers of $\Gamma_1$ and $\Gamma_3$ are on different halfplanes with respect to the line determined by the centers of $\Gamma$ and $\Gamma_2$. If the sum of the radii of $\Gamma_1, \Gamma_2$ and $\Gamma_3$ is equal to the radius of $\Gamma$, calculate the radius of $\Gamma_2$.