This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 45

1935 Moscow Mathematical Olympiad, 011

In $\vartriangle ABC$, two straight lines drawn from an arbitrary point $D$ on $AB$ are parallel to $AC$ , $BC$ and intersect $BC$ , $AC$ at $F$ , $G$, respectively. Prove that the sum of the circumferences of the circles circumscribed around $\vartriangle ADG$ and $\vartriangle BDF$ is equal to the circumference of the circle circumscribed around $\vartriangle ABC$.

2018 India IMO Training Camp, 1

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2018 Thailand TST, 1

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2018 Peru IMO TST, 6

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

1988 ITAMO, 3

A regular pentagon of side length $1$ is given. Determine the smallest $r$ for which the pentagon can be covered by five discs of radius $r$ and justify your answer.

1984 IMO Longlists, 63

Inside triangle $ABC$ there are three circles $k_1, k_2, k_3$ each of which is tangent to two sides of the triangle and to its incircle $k$. The radii of $k_1, k_2, k_3$ are $1, 4$, and $9$. Determine the radius of $k.$

2005 Oral Moscow Geometry Olympiad, 1

Given an acute-angled triangle $ABC$. A straight line parallel to $BC$ intersects sides $AB$ and $AC$ at points $M$ and $P$, respectively. At what location of the points $M$ and $P$ will the radius of the circle circumscribed about the triangle $BMP$ be the smallest? (I. Sharygin)

1984 IMO Shortlist, 18

Inside triangle $ABC$ there are three circles $k_1, k_2, k_3$ each of which is tangent to two sides of the triangle and to its incircle $k$. The radii of $k_1, k_2, k_3$ are $1, 4$, and $9$. Determine the radius of $k.$

2005 Sharygin Geometry Olympiad, 15

Given a circle centered at the origin. Prove that there is a circle of smaller radius that has no less points with integer coordinates.

2001 Bosnia and Herzegovina Team Selection Test, 4

In plane there are two circles with radiuses $r_1$ and $r_2$, one outside the other. There are two external common tangents on those circles and one internal common tangent. The internal one intersects external ones in points $A$ and $B$ and touches one of the circles in point $C$. Prove that $AC \cdot BC=r_1\cdot r_2$

1997 Estonia National Olympiad, 3

Tags: geometry , circles , radius
The points $A, B, M$ and $N$ are on a circle with center $O$ such that the radii $OA$ and $OB$ are perpendicular to each other, and $MN$ is parallel to $AB$ and intersects the radius $OA$ at $P$. Find the radius of the circle if $|MP|= 12$ and $|P N| = 2 \sqrt{14}$

Durer Math Competition CD Finals - geometry, 2010.C1

Tags: geometry , radius
Dürer explains art history to his students. The following gothic window is examined. Where the center of the arc of $BC$ is $A$, and similarly the center of the arc of $AC$ is $B$. The question is how much is the radius of the circle (radius marked $r$ in the figure).[img]https://cdn.artofproblemsolving.com/attachments/5/c/28e5ee47005bfde7f925908b519099d5e28d91.png[/img]

1970 IMO Shortlist, 8

$M$ is any point on the side $AB$ of the triangle $ABC$. $r,r_1,r_2$ are the radii of the circles inscribed in $ABC,AMC,BMC$. $q$ is the radius of the circle on the opposite side of $AB$ to $C$, touching the three sides of $AB$ and the extensions of $CA$ and $CB$. Similarly, $q_1$ and $q_2$. Prove that $r_1r_2q=rq_1q_2$.

1970 IMO, 1

$M$ is any point on the side $AB$ of the triangle $ABC$. $r,r_1,r_2$ are the radii of the circles inscribed in $ABC,AMC,BMC$. $q$ is the radius of the circle on the opposite side of $AB$ to $C$, touching the three sides of $AB$ and the extensions of $CA$ and $CB$. Similarly, $q_1$ and $q_2$. Prove that $r_1r_2q=rq_1q_2$.

2018 Junior Regional Olympiad - FBH, 4

It is given $4$ circles in a plane and every one of them touches the other three as shown: [img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvZC82L2FkYWQ5NThhMWRiMjAwZjYxOWFhYmE1M2YzZDU5YWI2N2IyYzk2LnBuZw==&rn=a3J1Z292aS5wbmc=[/img] Biggest circle has radius $2$, and every one of the medium has $1$. Find out the radius of fourth circle.

2018 India IMO Training Camp, 1

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

Ukrainian From Tasks to Tasks - geometry, 2012.13

Tags: geometry , radius
The sides of a triangle are consecutive natural numbers, and the radius of the inscribed circle is $4$. Find the radius of the circumscribed circle.

2015 Chile National Olympiad, 5

A quadrilateral $ABCD$ is inscribed in a circle. Suppose that $|DA| =|BC|= 2$ and$ |AB| = 4$. Let $E $ be the intersection point of lines $BC$ and $DA$. Suppose that $\angle AEB = 60^o$ and that $|CD| <|AB|$. Calculate the radius of the circle.

2004 Dutch Mathematical Olympiad, 2

Two circles $A$ and $B$, both with radius $1$, touch each other externally. Four circles $P, Q, R$ and $S$, all four with the same radius $r$, lie such that $P$ externally touches on $A, B, Q$ and $S$, $Q$ externally touches on $P, B$ and $R$, $R$ externally touches on $A, B, Q$ and $S$, $S$ externally touches on $P, A$ and $R$. Calculate the length of $r.$ [asy] unitsize(0.3 cm); pair A, B, P, Q, R, S; real r = (3 + sqrt(17))/2; A = (-1,0); B = (1,0); P = intersectionpoint(arc(A,r + 1,0,180), arc(B,r + 1,0,180)); R = -P; Q = (r + 2,0); S = (-r - 2,0); draw(Circle(A,1)); draw(Circle(B,1)); draw(Circle(P,r)); draw(Circle(Q,r)); draw(Circle(R,r)); draw(Circle(S,r)); label("$A$", A); label("$B$", B); label("$P$", P); label("$Q$", Q); label("$R$", R); label("$S$", S); [/asy]

1995 Chile National Olympiad, 7

In a semicircle of radius $4$ three circles are inscribed, as indicated in the figure. Larger circles have radii $ R_1 $ and $ R_2 $, and the larger circle has radius $ r $. a) Prove that $ \dfrac {1} {\sqrt{r}} = \dfrac {1} {\sqrt{R_1}} + \dfrac {1} {\sqrt{R_2}} $ b) Prove that $ R_1 + R_2 \le 8 (\sqrt{2} -1) $ c) Prove that $ r \le \sqrt{2} -1 $ [img]https://cdn.artofproblemsolving.com/attachments/0/9/aaaa65d1f4da4883973751e1363df804b9944c.jpg[/img]