This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

1969 IMO Shortlist, 27

$(GBR 4)$ The segment $AB$ perpendicularly bisects $CD$ at $X$. Show that, subject to restrictions, there is a right circular cone whose axis passes through $X$ and on whose surface lie the points $A,B,C,D.$ What are the restrictions?

2017 Harvard-MIT Mathematics Tournament, 10

Let $ABCD$ be a quadrilateral with an inscribed circle $\omega$. Let $I$ be the center of $\omega$, and let $IA=12,$ $IB=16,$ $IC=14,$ and $ID=11$. Let $M$ be the midpoint of segment $AC$. Compute the ratio $\frac{IM}{IN}$, where $N$ is the midpoint of segment $BD$.

1968 AMC 12/AHSME, 32

Tags: ratio
$A$ and $B$ move uniformly along two straight paths intersecting at right angles in point $O$. When $A$ is at $O$, $B$ is $500$ yards short of $O$. In $2$ minutes, they are equidistant from $O$, and in $8$ minutes more they are again equidistant from $O$. Then the ratio of $A'$s speed to $B'$s speed is: $\textbf{(A)}\ 4:5 \qquad\textbf{(B)}\ 5:6 \qquad\textbf{(C)}\ 2:3 \qquad\textbf{(D)}\ 5:8 \qquad\textbf{(E)}\ 1:2$

2012 AMC 8, 23

An equilateral triangle and a regular hexagon have equal perimeters. If the area of the triangle is 4, what is the area of the hexagon? $\textbf{(A)}\hspace{.05in}4 \qquad \textbf{(B)}\hspace{.05in}5 \qquad \textbf{(C)}\hspace{.05in}6 \qquad \textbf{(D)}\hspace{.05in}4\sqrt3 \qquad \textbf{(E)}\hspace{.05in}6\sqrt3 $

2003 Flanders Junior Olympiad, 2

Tags: ratio , geometry
Through an internal point $O$ of $\Delta ABC$ one draws 3 lines, parallel to each of the sides, intersecting in the points shown on the picture. [img]https://cdn.artofproblemsolving.com/attachments/e/3/03d4d1bb61eda8b4a72ff84466d700de47c147.png[/img] Find the value of $\frac{|AF|}{|AB|}+\frac{|BE|}{|BC|}+\frac{|CN|}{|CA|}$.

2013 APMO, 1

Let $ABC$ be an acute triangle with altitudes $AD$, $BE$, and $CF$, and let $O$ be the center of its circumcircle. Show that the segments $OA$, $OF$, $OB$, $OD$, $OC$, $OE$ dissect the triangle $ABC$ into three pairs of triangles that have equal areas.

1991 Czech And Slovak Olympiad IIIA, 4

Tags: geometry , ratio , distance
Prove that in all triangles $ABC$ with $\angle A = 2\angle B$ the distance from $C$ to $A$ and to the perpendicular bisector of $AB$ are in the same ratio.

2018 AIME Problems, 7

Triangle $ABC$ has sides $AB=9,BC = 5\sqrt{3},$ and $AC=12$. Points $A=P_0, P_1, P_2, \dots, P_{2450} = B$ are on segment $\overline{AB}$ with $P_k$ between $P_{k-1}$ and $P_{k+1}$ for $k=1,2,\dots,2449$, and points $A=Q_0, Q_1, Q_2, \dots ,Q_{2450} = C$ for $k=1,2,\dots,2449$. Furthermore, each segment $\overline{P_kQ_k}, k=1,2,\dots,2449$, is parallel to $\overline{BC}$. The segments cut the triangle into $2450$ regions, consisting of $2449$ trapezoids and $1$ triangle. Each of the $2450$ regions have the same area. Find the number of segments $\overline{P_kQ_k}, k=1,2 ,\dots,2450$, that have rational length.

2012 AIME Problems, 9

Let $x$ and $y$ be real numbers such that $\frac{\sin{x}}{\sin{y}} = 3$ and $\frac{\cos{x}}{\cos{y}} = \frac{1}{2}$. The value of $\frac{\sin{2x}}{\sin{2y}} + \frac{\cos{2x}}{\cos{2y}}$ can be expressed in the form $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p + q$.

2004 AIME Problems, 1

A chord of a circle is perpendicular to a radius at the midpoint of the radius. The ratio of the area of the larger of the two regions into which the chord divides the circle to the smaller can be expressed in the form $\frac{a\pi+b\sqrt{c}}{d\pi-e\sqrt{f}}$, where $a$, $b$, $c$, $d$, $e$, and $f$ are positive integers, $a$ and $e$ are relatively prime, and neither $c$ nor $f$ is divisible by the square of any prime. Find the remainder when the product $abcdef$ is divided by 1000.

1996 Denmark MO - Mohr Contest, 3

This year's gift idea from BabyMath consists of a series of nine colored plastic containers of decreasing size, alternating in shape like a cube and a sphere. All containers can open and close with a convenient hinge, and each container can hold just about anything next in line. The largest and smallest container are both cubes. Determine the relationship between the edge lengths of these cubes.

1980 AMC 12/AHSME, 3

Tags: ratio
If the ratio of $2x-y$ to $x+y$ is $\frac{2}{3}$, what is the ratio of $x$ to $y$? $\text{(A)} \ \frac{1}{5} \qquad \text{(B)} \ \frac{4}{5} \qquad \text{(C)} \ 1 \qquad \text{(D)} \ \frac{6}{5} \qquad \text{(E)} \ \frac{5}{4}$

2004 Purple Comet Problems, 2

Tags: ratio , geometry
In $\triangle ABC$, three lines are drawn parallel to side $BC$ dividing the altitude of the triangle into four equal parts. If the area of the second largest part is $35$, what is the area of the whole $\triangle ABC$? [asy] defaultpen(linewidth(0.7)); size(120); pair B = (0,0), C = (1,0), A = (0.7,1); pair[] AB, AC; draw(A--B--C--cycle); for(int i = 1; i < 4; ++i) { AB.push((i*A + (4-i)*B)/4); AC.push((i*A + (4-i)*C)/4); draw(AB[i-1] -- AC[i-1]); } filldraw(AB[1]--AB[0]--AC[0]--AC[1]--cycle, gray(0.7)); label("$A$",A,N); label("$B$",B,S); label("$C$",C,S);[/asy]

1958 AMC 12/AHSME, 19

Tags: ratio
The sides of a right triangle are $ a$ and $ b$ and the hypotenuse is $ c$. A perpendicular from the vertex divides $ c$ into segments $ r$ and $ s$, adjacent respectively to $ a$ and $ b$. If $ a : b \equal{} 1 : 3$, then the ratio of $ r$ to $ s$ is: $ \textbf{(A)}\ 1 : 3\qquad \textbf{(B)}\ 1 : 9\qquad \textbf{(C)}\ 1 : 10\qquad \textbf{(D)}\ 3 : 10\qquad \textbf{(E)}\ 1 : \sqrt{10}$

Kyiv City MO Juniors 2003+ geometry, 2014.851

On the side $AB$ of the triangle $ABC$ mark the point $K$. The segment $CK$ intersects the median $AM$ at the point $F$. It is known that $AK = AF$. Find the ratio $MF: BK$.

2003 Canada National Olympiad, 4

Tags: geometry , ratio
Prove that when three circles share the same chord $AB$, every line through $A$ different from $AB$ determines the same ratio $X Y : Y Z$, where $X$ is an arbitrary point different from $B$ on the first circle while $Y$ and $Z$ are the points where AX intersects the other two circles (labeled so that $Y$ is between $X$ and $Z$).

2010 Tournament Of Towns, 2

Alex has a piece of cheese. He chooses a positive number a and cuts the piece into several pieces one by one. Every time he choses a piece and cuts it in the same ratio $1 : a$. His goal is to divide the cheese into two piles of equal masses. Can he do it if $(a) a$ is irrational? $(b) a$ is rational, $a \neq 1?$

2014 Regional Olympiad of Mexico Center Zone, 4

Let $ABCD$ be a square and let $M$ be the midpoint of $BC$. Let $C ^ \prime$ be the reflection of $C$ wrt to $DM$. The parallel to $AB$ passing through $C ^ \prime$ intersects $AD$ at $R$ and $BC$ at $S$. Show that $$\frac {RC ^ \prime} {C ^\prime S} = \frac {3} {2}$$

2024 China Team Selection Test, 8

Tags: geometry , ratio
In $\triangle {ABC}$, tangents of the circumcircle $\odot {O}$ at $B, C$ and at $A, B$ intersects at $X, Y$ respectively. $AX$ cuts $BC$ at ${D}$ and $CY$ cuts $AB$ at ${F}$. Ray $DF$ cuts arc $AB$ of the circumcircle at ${P}$. $Q, R$ are on segments $AB, AC$ such that $P, Q, R$ are collinear and $QR \parallel BO$. If $PQ^2=PR \cdot QR$, find $\angle ACB$.

1989 AIME Problems, 15

Point $P$ is inside $\triangle ABC$. Line segments $APD$, $BPE$, and $CPF$ are drawn with $D$ on $BC$, $E$ on $AC$, and $F$ on $AB$ (see the figure at right). Given that $AP=6$, $BP=9$, $PD=6$, $PE=3$, and $CF=20$, find the area of $\triangle ABC$. [asy] size(200); pair A=origin, B=(7,0), C=(3.2,15), D=midpoint(B--C), F=(3,0), P=intersectionpoint(C--F, A--D), ex=B+40*dir(B--P), E=intersectionpoint(B--ex, A--C); draw(A--B--C--A--D^^C--F^^B--E); pair point=P; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); label("$P$", P, dir(0));[/asy]

1997 AMC 8, 13

Tags: ratio
Three bags of jelly beans contain 26, 28, and 30 beans. The ratios of yellow beans to all beans in each of these bags are $50\%$, $25\%$, and $20\%$, respectively. All three bags of candy are dumped into one bowl. Which of the following is closest to the ratio of yellow jelly beans to all beans in the bowl? $\textbf{(A)}\ 31\% \qquad \textbf{(B)}\ 32\% \qquad \textbf{(C)}\ 33\% \qquad \textbf{(D)}\ 35\% \qquad \textbf{(E)}\ 95\%$

1965 German National Olympiad, 3

Two parallelograms $ABCD$ and $A'B'C'D'$ are given in space. Points $A'',B'',C'',D''$ divide the segments $AA',BB',CC',DD'$ in the same ratio. What can be said about the quadrilateral $A''B''C''D''$?

2014 Lithuania Team Selection Test, 6

Tags: geometry , ratio
Circles ω[size=35]1[/size] and ω[size=35]2[/size] have no common point. Where is outerior tangents a and b, interior tangent c. Lines a, b and c touches circle ω[size=35]1[/size] respectively on points A[size=35]1[/size], B[size=35]1[/size] and C[size=35]1[/size], and circle ω[size=35]2[/size] – respectively on points A[size=35]2[/size], B[size=35]2[/size] and C[size=35]2[/size]. Prove that triangles A[size=35]1[/size]B[size=35]1[/size]C[size=35]1[/size] and A[size=35]2[/size]B[size=35]2[/size]C[size=35]2[/size] area ratio is the same as ratio of ω[size=35]1[/size] and ω[size=35]2[/size] radii.

1998 Romania Team Selection Test, 1

We are given an isosceles triangle $ABC$ such that $BC=a$ and $AB=BC=b$. The variable points $M\in (AC)$ and $N\in (AB)$ satisfy $a^2\cdot AM \cdot AN = b^2 \cdot BN \cdot CM$. The straight lines $BM$ and $CN$ intersect in $P$. Find the locus of the variable point $P$. [i]Dan Branzei[/i]

2017 Yasinsky Geometry Olympiad, 1

Rectangular sheet of paper $ABCD$ is folded as shown in the figure. Find the rato $DK: AB$, given that $C_1$ is the midpoint of $AD$. [img]https://3.bp.blogspot.com/-9EkSdxpGnPU/W6dWD82CxwI/AAAAAAAAJHw/iTkEOejlm9U6Dbu427vUJwKMfEOOVn0WwCK4BGAYYCw/s400/Yasinsky%2B2017%2BVIII-IX%2Bp1.png[/img]